Skip to main content
Log in

Effects of Prolonged Exposure to a Constant Electric Field on the Brain in Rats

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

An experimental paradigm consisting of prolonged transcranial stimulation of the human brain with a constant electric field was modeled in living rat hippocampal slices. Exposure to electric fields (14 min, 250 mV/mm) in the anodal and cathodal directions led to statistically significant changes in the amplitudes of total response (pop spikes) to stimulation of Schaffer collaterals (1/30 sec) in field CA1, with increases and decreases respectively. No long-term stimulation aftereffects were seen. Blockade of NMDA receptors with MK-801 eliminated electric field effects and induced a gradual decrease in responses throughout the recording period. It is suggested that the decrease in responses may reflect transfer of synapses to the “silent” state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. N. Ierusalimskii and P. M. Balaban, “Magnitude of the potential imposed on mollusk nerve cells with a low-frequency electric field,” Zh. Vyssh. Nerv. Deyat., 36, No. 1, 163–169 (1986).

    CAS  Google Scholar 

  2. V. N. Ierusalimskii, P. M. Balaban, V. M. Shtemler, and A. N. Kuznetsov, “Studies of the effects of a low-frequency electric field on the activity of identified neurons in the isolated common snail central nervous system,” Izv. Akad. Nauk SSSR, 6, 841–851 (1985).

    Google Scholar 

  3. A. Antal and W. Paulus, “Transcranial magnetic and direct current stimulation in the therapy of pain,” Schmerz., 24, No. 2, 161–166 (2010).

    Article  PubMed  CAS  Google Scholar 

  4. G. Ardolino, B. Bossi, S. Barbieri, and A. Priori, “Non-synaptic mechanisms underlie the after-effects of cathodal transcutaneous direct current stimulation of the human brain,” J. Physiol (England), 568, No. 2, 653–663 (2005).

    Article  CAS  Google Scholar 

  5. M. R. Bennett, “The concept of long-term potentiation of transmission at synapses,” Progr. Neurobiol., 60, 109–137 (2000).

    Article  CAS  Google Scholar 

  6. M. T. Berlim,V. Dias Neto, and G. Turecki, “Transcranial direct current stimulation: a promising alternative for the treatment of major depression?” Rev. Bras. Psiquiatr., 31, Supplement 1, 34–38 (2009).

    Article  Google Scholar 

  7. M. Chesler, “Regulation and modulation of pH in the brain,” Physiol. Rev., 83, 1183–1221 (2003).

    PubMed  CAS  Google Scholar 

  8. A. M. Craig, “Activity and synaptic receptor targeting: the long view,” Neuron, 21, 459–462 (1998).

    Article  PubMed  CAS  Google Scholar 

  9. D. Debanne, G. Daoudal, V. Sourdet, and M. Russier, “Brain plasticity and ion channels,” J. Physiol. (France), 97, 403–414 (2003).

    CAS  Google Scholar 

  10. J. Feil and A. Zangen, “Brain stimulation in the study and treatment of addiction,” Neurosci. Biobehav. Rev., 34, 559–574 (2010).

    Article  PubMed  Google Scholar 

  11. V. N. Ierusalimsky and P. M. Balaban, “Functioning of identified snail neurones in electric fields,” J. Exp. Biol., 131, 17–36 (1987).

    PubMed  CAS  Google Scholar 

  12. N. Islam, M. Aftabuddin, A. Moriwaki, et al., “Increase in the calcium level following anodal polarization in the rat brain,” Brain Res., 684, 206–208 (1995).

    Article  PubMed  CAS  Google Scholar 

  13. D. Liao, R. H. Scannevin, and R. Huganir, “Activation of silent synapses by rapid activity-dependent synaptic recruitment of AMPA receptors,” J. Neurosci., 21, No. 16, 6008–6017 (2001).

    PubMed  CAS  Google Scholar 

  14. D. Liao, X. Zhang, R. O’Brien, et al., “Regulation of morphological postsynaptic silent synapses in developing hippocampal neurons,” Nat. Neurosci., 2, No. 1, 37–43 (1999).

    Article  PubMed  CAS  Google Scholar 

  15. M. A. Nitsche, K. Fricke, U. Henschke, et al., “Pharmacological modulation of cortical excitability shifts induced by transcranial direct current stimulation in humans,” J. Physiol., 533, No. 1, 293–301 (2003).

    Article  Google Scholar 

  16. M. A. Nitsche and W. Paulus, “Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation,” J. Physiol., 527, 633–639 (2000).

    Article  PubMed  CAS  Google Scholar 

  17. M. A. Nietsche and W. Paulus, “Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans,” Neurology, 57, 1899–1901 (2001).

    Article  Google Scholar 

  18. D. P. Purpura and J. G. McMurtry, “Intracellular activities and evoked potential changes during polarization of motor cortex,” J. Neurophysiol., 28, 166–185 (1965).

    PubMed  CAS  Google Scholar 

  19. C. A. Terzuolo and T. H. Bullock, “Measurement of imposed voltage gradient to modulate neuronal firing,” Proc. Natl. Acad. Sci. USA, 42, 687–694 (1956).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Ya. Gurskaya.

Additional information

Translated from Zhurnal Vysshei Nervnoi Deyatel’nosti imeni I. P. Pavlova, Vol. 62, No. 1, pp. 79–88, January–February, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gurskaya, O.Y., Altynbaev, R.S. & Kudryashov, I.E. Effects of Prolonged Exposure to a Constant Electric Field on the Brain in Rats. Neurosci Behav Physi 43, 315–322 (2013). https://doi.org/10.1007/s11055-013-9733-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-013-9733-0

Keywords

Navigation