Skip to main content
Log in

Effects of the Azimuthal Position of Stationary and Moving Sound Images on the Mismatch Negativity Phenomenon

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Abstract

This report presents results obtained from studies of the phenomenon of mismatch negativity in conditions of dichotic stimulation with presentation of deviant stimuli modeling movement of a sound image towards or away from a standard stimulus and on presentation of stationary deviants located at an angle of 90° to the standard. Standard stimuli were located close to the left or right ear or in the midline of the head. All deviant stimuli induced mismatch negativity. Movement of the deviant stimulus from the standard was found to induce mismatch negativity with the longest latency and smallest amplitude for all azimuthal positions of the standard stimulus. In addition, it was only in this direction of movement that there was a relationship between measures of mismatch negativity and the azimuth of the standard. It was suggested that the process of the recognition of differences between interaural delay times is significantly dependent on the nature of changes in this parameter at the moment at which the deviant stimulus is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Ya. A. Al’tman, S. F. Vaitulevich, A. L. Varfolomeev, and L. B. Shestopalova, “Studies of the phenomenon of mismatch negativity during exposure to stationary and moving sound images,” Fiziol. Cheloveka, 30, No.1, 70–81 (2004).

    Google Scholar 

  2. S. F. Vaitulevich and S. P. Pak, “The effect of stimulus duration on the characteristics of evoked potentials in humans with sound sources in different locations,” Sensor. Sistemy, 4, 84–91 (1990).

    Google Scholar 

  3. J. A. Altman, “Are there neurons detecting direction of sound source motion?” Exptl. Neurol., 22, 13–25 (1968).

    Article  Google Scholar 

  4. J. A. Altman and S. F. Vaitulevich, “Auditory image movement in evoked potentials,” EEG Clin. Neurophysiol., 75, No.4, 323–333 (1990).

    Article  Google Scholar 

  5. F. Baumgart, B. Gaschler-Markefski, M. G. Woldorff, H. J. Heinze, and H. Schleich, “A movement-sensitive area in auditory cortex,” Nature, 400, 724–726 (1999).

    Article  PubMed  Google Scholar 

  6. R. A. Butler, “The influence of spatial separation of sound sources on the auditory cortex evoked responses,” Neuropsychologia, 10, No.2, 219–225 (1972).

    Article  PubMed  Google Scholar 

  7. C. Colin, M. Radeau, A. Soquet, B. Dachy, and P. Deltenre, “Electrophysiology of spatial scene analysis: the mismatch negativity (MMN) is sensitive to the ventriloquist illusion” Clin. Neurophysiol., 113, 507–518 (2002).

    Article  PubMed  Google Scholar 

  8. L. Y. Deouell, S. Bentin, and M. H. Giard, “Mismatch negativity in dichotic listening. Evidence for interhemispheric differences and multiple generators,” Psychophysiology, 35, 355–365 (1998).

    Article  PubMed  Google Scholar 

  9. C. F. Doeller, B. Opitz, A. Mecklinger, C. Krick, W. Reith, and E. Schroger, “Prefrontal cortex involvement in preattentive auditory deviance detection: neuroimaging and electrophysiological evidence,” NeuroImage, 20, 1270–1282 (2003).

    Article  PubMed  Google Scholar 

  10. C. Y. Ducommun, M. M. Murray, G. Thut, A. Bellman, I. Viaud-Delmon, S. Clarke, and C. M. Michel, “Segregated processing of auditory motion and auditory location: an ERP mapping study,” NeuroImage, 16, 76–88 (2002).

    Article  PubMed  Google Scholar 

  11. T. D. Griffiths, C. J. Bench, and R. S. J. Frackowiak, “Human cortical areas selectively activated by apparent sound motion,” Curr. Biol., 4, 892–895 (1994).

    Article  PubMed  Google Scholar 

  12. J. Kaiser, W. Lutzenberger, and N. Birbaumer, “Simultaneous bilateral mismatch response to right-but not leftward sound lateralization,” Neuroreport, 11, 2889–2892 (2000).

    PubMed  Google Scholar 

  13. J. Kaiser and W. Lutzenberger, “Location changes enhance hemispheric asymmetry of magnetic fields evoked by lateralized sounds in humans,” Neurosci. Lett., 314, No. 1–2, 17–20 (2001).

    Article  PubMed  Google Scholar 

  14. J. C. Middlebrooks and D. M. Green, “Sound localization by human listeners,” Ann. Rev. Psychological., 42, 135–159 (1991).

    Article  Google Scholar 

  15. R. Naatanen and T. Picton, “The N1 wave of the human electric and magnetic response to sound. A review and an analysis of the component structure,” Psychophysiol., 24, 375–425 (1987).

    Google Scholar 

  16. R. Naatanen, M. Sams, K. Alho, P. Paavilainen, K. Reinikainen, and E. N. Sokolov, “Frequency and location specificity for the human vertex N1 wave,” EEG Clin. Neurophysiol., 69, 523–531 (1988).

    Article  Google Scholar 

  17. W. Nager, C. Kohlmetz, G. Joppich, J. Mobes, and T. F. Munte, “Tracking of multiple sound sources defined by interaural time differences: brain potential evidence in humans,” Neurosci. Lett., 344, 181–184 (2003).

    Article  PubMed  Google Scholar 

  18. D. A. Nelson and F. M. Lassman, “Effects of intersignal interval on the human auditory evoked response,” J. Acoust. Soc. Amer., 44, 1529–1532 (1968).

    Google Scholar 

  19. P. Paavilainen, M. L. Karlsson, K. Reinikainen, and R. Naatanen, “Mismatch negativity to change in spatial location of an auditory stimulus,” EEG. Clin. Neurophysiol., 73, 129–141 (1989).

    Article  Google Scholar 

  20. J. Polich (ed.), Detection of Change. Event-Related Potentials and fMRI Findings, Kluwer Academic Publishers (2003), No. 1–22, pp. 61–81.

  21. E. Schroger, “Processing of auditory deviants with changes in one versus two stimulus dimensions,” Psychophysiol., 32, 55–65 (1995).

    Google Scholar 

  22. E. Schroger, “Interaural time and level differences: integrated or separated processing?” Hearing Res., 96, 191–198 (1996).

    Article  Google Scholar 

  23. E. Schroger and C. Wolff, “Mismatch response of the human brain to changes in sound location,” Neuroreport, 7, No.18, 3005–3008 (1996).

    PubMed  Google Scholar 

  24. E. Schroger and C. Wolff, “Fast preattentive processing of location: a functional basis for selective listening in humans,” Neurosci. Lett., 232, 5–8 (1997).

    Article  PubMed  Google Scholar 

  25. A. R. A. Sovijarvi and J. Hyvarinen, “Auditory cortical neurons in the cat sensitive to direction of sound source movement,” Brain Res., 73, 455–471 (1974).

    Article  PubMed  Google Scholar 

  26. E. Stumpf, J. M. Toronchuk, and M. S. Cynader, “Neurons in cat primary auditory cortex sensitive to correlates of auditory motion in three-dimensional space,” Exptl. Brain Res., 88, No.1, 158–168 (1992).

    Google Scholar 

  27. E. Sussman, I. Winkler, W. Ritter, K. Alho, and R. Naatanen, “Temporal integration of auditory stimulus deviance as reflected by the mismatch negativity,” Neurosci. Lett., 264, No.1–3, 161–164 (1999).

    Article  PubMed  Google Scholar 

  28. W. A. Teder-Salejarvi, B. Roder, and H. J. Neville, “Spatial attention to central and peripheral auditory stimuli as indexed by event-related potentials,” Cogn. Brain Res., 8, No.3, 213–227 (1999).

    Article  Google Scholar 

  29. M. Tervaniemi, J. Saarinen, P. Paavilainen, N. Danilova, and R. Naatanen, “Temporal integration of auditory information in sensory memory as reflected by the mismatch negativity,” Biol. Psychol., 38, 157–167 (1994).

    Article  PubMed  Google Scholar 

  30. J. M. Toronchuk, E. Stumpf, and M. S. Cynader, “Auditory cortex neurons sensitive to correlates of auditory motion: underlying mechanisms,” Exptl. Brain Res., 88, No.1, 169–180 (1992).

    Google Scholar 

  31. I. Winkler, I. Czigler, M. Jaramillo, P. Paavilainen, and R. Naatanen, “Temporal constraints of auditory event synthesis. Evidence from ERPs,” NeuroReport, 9, 495–499 (1998).

    PubMed  Google Scholar 

  32. I. Winkler, M. Tervaniemi, E. Schroger, C. Wolff, and R. Naatanen, “Preattentive processing of auditory spatial information in humans,” Neurosci. Lett., 242, 49–52 (1998).

    Article  PubMed  Google Scholar 

  33. H. Yabe, M. Tervaniemi, J. Sinkkonen, M. Huotilainen, R. J. Ilmoniuemi, and R. Naatanen, “Temporal window of integration of auditory information in the human brain,” Psychophysiol., 35, 615–619 (1998).

    Article  Google Scholar 

  34. H. Yabe, I. Winkler, I. Czigler, S. Koyama, R. Kagiki, T. Sutoh, T. Hiruma, and S. Kaneko, “Organizing sound sequences in the human brain. The interplay of auditory streaming and temporal integration,” Brain Res., 897, 222–227 (2001).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Rossiiskii Fiziologicheskii Zhurnal imeni I. M. Sechenova, Vol. 90, No. 9, pp. 1081–1093, September, 2004.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shestopalova, L.B., Vaitulevich, S.F. Effects of the Azimuthal Position of Stationary and Moving Sound Images on the Mismatch Negativity Phenomenon. Neurosci Behav Physiol 35, 855–864 (2005). https://doi.org/10.1007/s11055-005-0135-9

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-005-0135-9

Key Words

Navigation