Skip to main content
Log in

Practical Incorporation of Multivariate Parameter Uncertainty in Geostatistical Resource Modeling

  • Original Paper
  • Published:
Natural Resources Research Aims and scope Submit manuscript

Abstract

There is a need to bridge theory and practice for incorporating parameter uncertainty in geostatistical simulation modeling workflows. Simulation workflows are a standard practice in natural resource and recovery modeling, but the incorporation of multivariate parameter uncertainty into those workflows is challenging. However, the objectives can be met without considerable extra effort and programming. The sampling distributions of statistics comprise the core theoretical notion with the addition of the spatial degrees of freedom to account for the redundancy in the spatially correlated data. Prior parameter uncertainty is estimated from multivariate spatial resampling. Simulation-based transfer of prior parameter uncertainty results in posterior distributions which are updated by data conditioning and the model domain extents and configuration. The results are theoretically tractable and practical to achieve, providing realistic assessments of uncertainty by accounting for large-scale parameter uncertainty, which is often the most important component impacting a project. A simulation-based multivariate workflow demonstrates joint modeling of intrinsic shale properties and uncertainty in estimated ultimate recovery in a shale gas project. The multivariate workflow accounts for joint prior parameter uncertainty given the current well locations and results in posterior estimates on global distributions of all modeled properties. This is achieved by transferring the joint prior parameter uncertainty through conditional simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Babak, O., & Deutsch, C. V. (2009). Accounting for parameter uncertainty in reservoir uncertainty assessment: the conditional finite-domain approach. Natural Resources Research, 18(1), 7–17.

    Article  Google Scholar 

  • Barnett, R. M., & Deutsch, C. V. (2015). Multivariate imputation of unequally sampled geological variables. Mathematical Geosciences. doi:10.1007/s11004-014-9580-8.

    Google Scholar 

  • Bretherton, C. S., Widmann, M., Dymnikov, V. P., Wallace, J. M., & Bladé, I. (1999). The effective number of spatial degrees of freedom of a time-varying field. Journal of Climate, 12(7), 1990–2009.

    Article  Google Scholar 

  • Christakos, G., & Li, X. (1998). Bayesian maximum entropy analysis and mapping: a farewell to kriging estimators. Mathematical Geology, 30(4), 435–462.

    Article  Google Scholar 

  • Deutsch, C. V., & Journel, A. G. (1998). GSLIB, geostatistical software library and users guide (2nd ed.). New York: Oxford University Press. 369p.

    Google Scholar 

  • Diggle, P. J., & Ribeiro, P. J, Jr. (2002). Bayesian inference in Gaussian model based geostatistics. Geographical & Environmental Modelling, 6(2), 129–146.

    Article  Google Scholar 

  • Dowd, P. A., & Pardo-Igúzquiza, E. (2002). The incorporation of model uncertainty in geostatistical simulation. Geographical & Environmental Modelling, 6(2), 147–169.

    Article  Google Scholar 

  • Efron, B., & Tibshirani, R. (1986). Bootstrap methods for standard errors, confidence intervals, and other measures of statistical accuracy. Statistical Science, 1, 54–75.

    Article  Google Scholar 

  • Efron, B., & Tibshirani, R. J. (1993). An introduction to the bootstrap. New York: Chapman & Hall.

    Book  Google Scholar 

  • Feyen, L., & Caers, J. (2006). Quantifying geological uncertainty for flow and transport modeling in multi-modal heterogeneous formations. Advances in Water Resources, 29(6), 912–929.

    Article  Google Scholar 

  • Fraedrich, K., Ziehmann, C., & Sielmann, F. (1995). Estimates of spatial degrees of freedom. Journal of Climate, 8(2), 361–369.

    Article  Google Scholar 

  • Friedmann, F., Chawathe, A., & Larue, D. K. (2003). Assessing uncertainty in channelized reservoirs using experimental designs. SPE Reservoir Evaluation & Engineering, 6(4), 264–274.

    Article  Google Scholar 

  • Goovaerts, P. (1997). Geostatistics for natural resources evaluation. Oxford: Oxford University Press. 496p.

    Google Scholar 

  • Haskett, W. J., & Brown, P. J. (2005). Evaluation of unconventional resource plays. In SPE Annual Technical Conference and Exhibition, Dallas, TX SPE-96879-MS.

  • Journel, A. G., & Bitanov, A. (2004). Uncertainty in N/G ratio in early reservoir development. Journal of Petroleum Science and Engineering, 44(1), 415–430.

    Google Scholar 

  • Kitanidis, P. K. (1986). Parameter uncertainty in estimation of spatial functions: Bayesian analysis. Water Resources Research, 22(4), 499–507.

    Article  Google Scholar 

  • Manchuk, J. G., & Deutsch, C. V. (2012). A flexible sequential Gaussian simulation program: USGSIM. Computers & Geosciences, 41, 208–216.

    Article  Google Scholar 

  • Marchant, B. P., & Lark, R. M. (2004). Estimating variogram uncertainty. Mathematical Geology, 36(8), 867–898.

    Article  Google Scholar 

  • Ortiz, J., & Deutsch, C. V. (2002). Calculation of uncertainty in the variogram. Mathematical Geology, 34(2), 169–183.

    Article  Google Scholar 

  • Ouenes, A. (2014). Distribution of well performances in shale reservoirs and their predictions using the concept of shale capacity. In SPE/EAGE European Unconventional Conference and Exhibition, Vienna, Austria, SPE 167779.

  • Pyrcz, M., & Deutsch, C. V. (2014). Geostatistical reservoir modeling (2nd ed.). Oxford: Oxford University Press. 448p.

    Google Scholar 

  • SPEE. (2010). Guidelines for the practical evaluation of undeveloped reserves in resource plays. Society of Petroleum Evaluation Engineers Monograph, 3, 78.

    Google Scholar 

  • Vargas-Guzman, J. A., Warrick, A. W., & Myers, D. E. (1999). Multivariate correlation in the framework of support and spatial scales of variability. Mathematical Geology, 31(1), 85–103.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Daniel Khan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, K.D., Deutsch, C.V. Practical Incorporation of Multivariate Parameter Uncertainty in Geostatistical Resource Modeling. Nat Resour Res 25, 51–70 (2016). https://doi.org/10.1007/s11053-015-9267-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11053-015-9267-y

Keywords

Navigation