Skip to main content

Advertisement

Log in

Ultramafic and Mafic Rock Distributions in Central Alaska and Implications for CO2 Sequestration

  • Published:
Natural Resources Research Aims and scope Submit manuscript

Abstract

Understanding the distribution of mafic and ultramafic rocks in Interior Alaska provides important constraints on potential economic uses of these igneous rocks, such as future sites for CO2 sequestration. However, poor surface exposure limits understanding of the subsurface geometry and extent of these rocks. In this study, regional aeromagnetic and gravity surveys, geologic maps, drill hole data, physical rock properties, and magnetic data from surface samples were used to build an integrated potential field model that provides a model of the distribution and volume of two of the most significant of these bodies, the mafic and ultramafic rocks of the Tozitna and Livengood Terranes. Although solutions to theoretically calculated geophysical models are non-unique and consequently subject to unquantified uncertainties, our highly integrated model provides a first-order approximation of the distribution of these rocks. Modeling results indicate that mafic and ultramafic rocks in both Terranes are sheet-like, probably thrust-bounded, and continue to significant depths. First approximation volume estimates suggest that there is up to 3,300 billion m3 of mafic and ultramafic rocks between the surface and 3,000 m depth within 10 km of the existing transportation corridor. The maximum carbonation potential of Mg-bearing minerals via a combination of surface and subsurface CO2 injection techniques in these two Terranes is 722 gigatons of CO2. Assuming an actual CO2 uptake capacity of these rocks of only 1 %, this study indicates there is a sufficient quantity of mafic and ultramafic rocks adjacent to existing transportation corridors to meet foreseeable CO2 sequestration needs in Interior Alaska.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Athey, J.E., & Craw, P.A. (2004). Geologic map of the Livengood SW C-3 and SE C-4 quadrangles, Tolovana Mining District, Alaska: Alaska Division of Geological & Geophysical Surveys Preliminary Interpretive Report 2004-3, pp. 1–24.

  • Athey, J.E., Szumigala, D.J., Newberry, R.J., Werdon, M.B., & Hicks, S.A. (2004a). Bedrock geologic map of the Livengood SW C-3 and SE C-4 quadrangles, Tolovana Mining District, Alaska: Alaska Division of Geological & Geophysical Surveys Preliminary Interpretive Report 2004-3B, scale 1:50,000, 1 sheet.

  • Athey, J.E., Werdon, M.B., Szumigala, D.J., Newberry, R.J., Hicks, S.A., & Erickson, H.A. (2004b). Major oxide, minor oxide, and trace element geochemical data from rocks collected in the Livengood Quadrangle, Alaska, in 2001 and 2003: Alaska Division of Geological & Geophysical Surveys Raw Data File 2004-2, 13 p., 1 sheet, scale 1:63,360.

  • Barnes, D.F. (1971). Preliminary Bouguer anomaly and specific gravity maps of Seward Peninsula and Yukon Flats, Alaska: U.S. Geological Survey Open-file report 71-0014, p. 1–12, 4 sheets, scale 1:1,000,000.

  • Barton, P. J. (1986). The relationship between seismic velocity and density in the continental crust: A useful constraint? Geophysical Journal of the Royal Astronomical Society, 87(1), 195–208.

    Article  Google Scholar 

  • Beaudoin, B. C., Fuis, G. S., Lutter, W. J., Mooney, W. D., & Moore, T. E. (1994). Crustal velocity structure of the northern Yukon-Tanana upland, central Alaska: Results from TACT refraction/wide-angle reflection data. GSA Bulletin, 106, 981–1001.

    Article  Google Scholar 

  • Brosgé, W.P., Lanphere, M.A., Reiser, H.N., & Chapman, R.M. (1969). Probable Permian age of the Rampart Group, central Alaska: U.S. Geological Survey Bulletin 1294-B, pp. B1–B18.

  • Chapman, R.M., Weber, F.R., & Taber, B. (1971). Preliminary geologic map of the Livengood Quadrangle, Alaska: U.S. Geological Survey Open-file Report 71-66(483), scale 1:250,000, 2 sheets.

  • DGGS staff, Geoterrex-Dighem, and Stevens Exploration Management Corp. (1999). Total field magnetics of part of the Livengood mining district, Alaska, central Livengood Quadrangle: Alaska Division of Geological & Geophysical Surveys Report of Investigation 99-4, scale 1:63,360, 1 sheet.

  • Dover, J. H. (1994). Geology of part of east-central Alaska. In G. Plafker & H. C. Berg (Eds.), The geology of Alaska (Vol. G-1, pp. 153–204). Boulder, CO: The Geological Society of America, The Geology of North America.

    Google Scholar 

  • Foster, H.L., Keith, T.E.C., & Menzie, W.D. (1987). The Geology of East-Central Alaska: U.S. Geological Survey Open-File Report 87-0188, 70 p.

  • Gislason, S. R., & Oelkers, E. H. (2014). Carbon storage in basalt. Science, 344(6182), 373–374.

    Article  Google Scholar 

  • Goff, F., & Lackner, K. S. (1998). Carbon dioxide sequestering using ultramafic rocks. Environmental Geosciences, 5(3), 89–101.

    Article  Google Scholar 

  • Grantz, A., Moore, T. E., & Roeske, S. M. (1991). Continent-ocean transect A-3: Gulf of Alaska to Arctic Ocean (p. 72). Boulder, CO: Geological Society of America.

    Google Scholar 

  • Griesel, G.A., Szumigala, D.J., Freeman, L.K., Newberry, R.J., Elliott, B.A., & Werdon, M.B. (2010). Major-oxide, minor-oxide, trace-element, and geochemical data from rocks collected in 2010 in the Tolovana mining district, Livengood B-3 and B-4 quadrangles, Alaska: Alaska Division of Geological & Geophysical Surveys Raw Data File 2010-3, 31 p.

  • Hanks, C., & Holdmann, G. (Eds.) (2013). Using modeling to assess CO2 sequestration, engineering, environmental and economic issues related to a proposed coal-to-liquids plant in Interior Alaska: Prepared for the U.S. Air Force Office of Scientific Research by the Geophysical Institute and the Alaska Center for Energy and Power, University of Alaska Fairbanks, 222 p.

  • IPCC (2005). Carbon Dioxide Capture and Storage. Intergovernmental Panel on Climate Change Special Report, Metz, B., Davidson, O., de Coninck, H., Loos, M., and Meyer, L. (Eds.). Cambridge, UK: Cambridge University Press, 431 p.

  • Kearey, P., Brooks, M., & Hill, I. (2002). An introduction to geophysical exploration (pp. 142–144). Oxford, UK: Blackwell Science.

    Google Scholar 

  • Liss, S.A., Reifenstuhl, R.R., Clautice, K.C., Bundtzen, T.K., Newberry, R.J., Dover, J.H., & Blodgett, R.B. (1997). Rock geochemistry from the Rampart Mining District (Tanana B-1 Quadrangle with some samples from adjacent quadrangles): Alaska Division of Geological & Geophysical Surveys Public Data File 97-29 g, 19 p.

  • Loney, R.A., & Himmelberg, G.R. (1988). Ultramafic rocks of the Livengood Terrane. In: Galloway, J.P., and Hamilton, T.D. (Eds.), Geologic Studies in Alaska by the U.S. Geological Survey during 1987. U.S. Geological Survey Circular 1016, pp. 68–70.

  • Mani, D., Charan, S. N., & Kumar, B. (2008). Assessment of carbon dioxide sequestration potential of ultramafic rocks in the greenstone belts of southern India. Current Science, 94(1), 53–60.

    Google Scholar 

  • Matter, J. M., Takahashi, T., & Goldberg, D. (2007). Experimental evaluation of in situ CO2-water-rock reactions during CO2 injection in basaltic rocks: Implications for geological CO2 sequestration. Geochemistry, Geophysics, Geosystems, 8, Q02001. doi:10.1029/2006GC001427.

    Article  Google Scholar 

  • Meyer Jr., J.F., & Saltus, R.W. (1995). Merged aeromagnetic map of Interior Alaska. U.S. Geological Survey Geophysical Investigations Map GP-1014, scale 1:500,000, 2 sheets.

  • Meyer Jr., J.F., Saltus, R.W., Barnes, D.F., & Morin, R.L. (1996). Bouguer gravity maps of Interior Alaska. U.S. Geological Survey Geophysical Investigations Map GP-1016, scale 1:500,000, 2 sheets.

  • Meyer, N. A., Vögeli, J. U., Becker, M., Broadhurst, J. L., Reid, D. L., & Franzidis, J.-P. (2014). Mineral carbonation of PGM mine tailings for CO2 storage in South Africa: A case study. Minerals Engineering, 59, 45–51. doi:10.1016/j.mineng.2013.10.014.

    Article  Google Scholar 

  • O’Connor, W.K., Dahlin, D.C., Rush, G.E., Gerdemann, S.J., Penner, L.R., & Nilsen, R.P. (2005). Aqueous mineral carbonation: Mineral availability, pretreatment, reaction parametrics, and process studies, DOE/ARC-TR-04-002, Albany Research Center, Albany, New York.

  • Oelkers, E. H., Gislason, S. R., & Matter, J. (2008). Mineral carbonation of CO2. Elements, 4(5), 333–337.

    Article  Google Scholar 

  • Patton, W., Box, S. E., & Grybeck, D. J. (1994). Ophiolites and other mafic-ultramafic complexes in Alaska. In G. Plafker & H. C. Berg (Eds.), The geology of Alaska (Vol. G-1, pp. 671–686). Boulder, CO: The Geological Society of America, The Geology of North America.

    Google Scholar 

  • Patton, W.W., & Miller, T.P. (1973). Bedrock geologic map of Bettles and southern part of Wiseman quadrangles, Alaska: U.S. Geologic Survey Miscellaneous Field Studies Map Mf-492, scale 1:250,000.

  • Reifenstuhl, R.R., Dover, J.H., Newberry, R.J., Clautice, K.H., Liss, S.A., Blodgett, R.B., Bundtzen, T.K., & Weber, F.R. (1997). Interpretative geologic bedrock map of the Tanana B-1 Quadrangle, Central Alaska: Alaska Division of Geological & Geophysical Surveys Report of Investigations 97-15b, pp. 1–14.

  • Rudd, J. (1999). Project report of the 1998 geophysical survey data for part of the Livengood Mining District, Alaska, central Livengood Quadrangle: Alaska Division of Geological & Geophysical Surveys Public-Data File 99-17, pp. 1–132.

  • Saltus, R. W., & Blakely, R. J. (2011). Unique geologic insights from “non-unique” gravity and magnetic interpretation. GSA Today, 21(12), 4–11. doi:10.1130/G136A.1.

    Article  Google Scholar 

  • Saltus, R.W., Brown, P.J., Morin, R.L., & Hill, P.L. (2008) 2006 Compilation of Alaska Gravity Data and Historical Reports: USGS Data Series 264.

  • Sanna, A., Uibu, M., Caramanna, G., Kuusik, R., & Maroto-Valer, M. M. (2014). A review of mineral carbonation technologies to sequester CO2. Chemical Society Review, 43(23), 8049–8080. doi:10.1039/c4cs00035h.

    Article  Google Scholar 

  • Sturmer, D.M., LaPointe, D.D., Price, J.G., & Hess, R.H. (2007). Assessment of the potential for carbon dioxide sequestration by reactions with rocks in Nevada: Nevada Bureau of Mines and Geology Report 52, 46 p.

  • Union of Concerned Scientists (2012). Environmental impacts of coal power. Last accessed March 2014. URL: http://www.ucsusa.org/clean_energy/coalvswind/c02c.html.

  • U.S.G.S. (2003). Alaska gravity maps CBA Map 8, 9 October 2003. U.S. Geological Survey. Last accessed September 2011. URL: http://www.geo.utep.edu/pub/niti/Alaska%20project2009/Gravity%20data/USGS_2006_compilation_of_AK_grv_data/main.pdf, 4 sheets.

  • Voormeij, D.A., Simandl, G.J., & O’Connor, B. (2004). A systematic assessment of ultramafic rocks and their suitability for mineral sequestration of CO2. Division of Engineers and Geoscientists in the Forest Sector, Professional Engineers and Geoscientists of British Columbia. Last accessed July 2012. URL: http://www.degifs.com/pdf/ultramafics%20in%20BC.pdf, 4 p.

  • Weber, F.R., Wheeler, K.L., Rinehart, C.D., Chapman, R.M., & Blodgett, R.B. (1992). Geologic map of the Livengood Quadrangle, Alaska: U.S. Geological Survey Open-File Report 92-562, 20 p., 1 sheet, scale 1:250,000.

  • Wilson, S. A., Dipple, G. M., Power, I. M., Thom, J. M., Anderson, R. G., Raudsepp, M., et al. (2009). Carbon dioxide fixation within mine wastes of ultramafic-hosted ore deposits: Examples from the Clinton Creek and Cassiar Chrysotile Deposits, Canada. Economic Geology, 104, 95–112.

    Article  Google Scholar 

  • Wilson, F.H., Dover, J.H., Bradley, D.C., Weber, F.R., Bundtzen, T.K., & Haeussler, P.J. (1998). Geologic map of central (Interior) Alaska. US Geological Survey Open File Report 98-133.

Download references

Acknowledgments

This study was supported by U.S. Air Force Office of Scientific Research (AFOSR) Award FA9550-11-1-0006. We are grateful to Dr. Bernard Housen, Paleomagnetism Laboratory, Western Washington University, and his graduate students for analyzing and interpreting the paleomagnetic character of the samples collected for this study. We thank International Tower Hill Mines Inc. and especially the company’s chief geologist Chris Puchner for generously providing stratigraphic information and drill log and physical rock property data for the Livengood-Money Knob area. Maciej Sliwinski and Nilesh Dixit provided field and laboratory assistance. The manuscript benefited greatly from discussions with Carl Tape and comments by two anonymous reviewers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catherine L. Hanks.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tomsich, C.S., Hanks, C.L., Stone, D.B. et al. Ultramafic and Mafic Rock Distributions in Central Alaska and Implications for CO2 Sequestration. Nat Resour Res 24, 349–368 (2015). https://doi.org/10.1007/s11053-014-9259-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11053-014-9259-3

Keywords

Navigation