Skip to main content
Log in

Synthesis and characterization of ZnO/ZnSe NWs/PbS QDs solar cell

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

The capture of solar energy has gained the attention for the next generation solar cell. ZnO/ZnSe NW arrays were synthesized on an FTO glass substrate using a simple and facile hydrothermal and ion-exchange approaches. The lead sulfide (PbS) QDs was infiltrated into ZnO/ZnSe NWs via SILAR method for making inorganic quantum dot sensitized ZnO/ZnSe/PbS QDs solar cell. The surface morphology, structural, optical, and J-V characteristics have been investigated. The ZnO/ZnSe NW is a core–shell like structure, and the absorption edge shifted from the UV region (ZnO NWs) to the near infrared region for ZnO/ZnSe NWs/PbS QDs. For PbS QDs-sensitized solar cell, the obtained value of η = 1.1%, J sc = 20.60 mA/cm2, V oc = 155 mV, and FF = 34.7%, respectively. The photovoltaic performance of the device in this study is still inferior. However, it is the first report regarding to ZnO/ZnZe NWs/PbS QDs solar cell. The achieving high absorption and large short circuit current density may interest in further improvement of the device performance by suppressing surface defects, optimizing the quality of ZnO/ZnSe NWs and PbS QDs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abbas MA, Basit MA, Park TJ, Bang JH (2015) Phys Chem Chem Phys 17:9752–9760

    Article  Google Scholar 

  • Alqarni, Fahad and Alqarni Dhafer, Study of pizoelectric Effect on Type-II Heterojunction ZnO/ZnSe Core/Shell Nanowire Arrays, (2015). University of New Orleans Theses and Dissertations. Paper 2034.

  • Alvi NH, Wasiedul H, Farooq B, Nur O, Willander M (2013) Mater Lett 106:158–163

    Article  Google Scholar 

  • Barnham KWJ, Duggan G (1990) J Appl Phys 67:3490

    Article  Google Scholar 

  • Baxter JB, Schmuttenmaer CA (2006) J Phys Chem B 110:25229

    Article  Google Scholar 

  • Bessho T, Yoneda E, Yum JH, Guglielmi M, Tavernelli I, Imai H, Rothlisberger U, Nazeeruddin MK, Grätzel M (2009) J Am Chem Soc 131:5930–5934

    Article  Google Scholar 

  • Briseno AL, Holcombe TW, Boukai AI, Garnett EC, Shelton SW, Frechet JJM, Yang PD (2010) Nano Lett 10:334

    Article  Google Scholar 

  • Cao BQ, Lorenz M, Rahm A, Wenckstern H, Czekalla C, Lenzner J, Benndorf G, Grundmann M (2007) Nanotechnology 18:455707

    Article  Google Scholar 

  • Chuang MCH, Brown RP, Bulović V, Bawendi GM (2014) Nat Mater 3984:1–6

    Google Scholar 

  • Du J, Du Z, Hu JS, Pan Z, Shen Q, Sun J, Long D, Dong H, Sun L, Zhong X, Wan LJ (2016) J Am Chem Soc 138:4201–4209

    Article  Google Scholar 

  • Feteha MY, Ameen M (2013) Journal of Power and Energy Engineering 1:67–72

    Article  Google Scholar 

  • Foo KL, Hashim U, Muhammad K, Voon CH (2014) Nanoscale Res Lett 9:429

    Article  Google Scholar 

  • Geisz JF, Friedman DJ, Ward JS, Duda A, Olavarria WJ, Moriarty TE, Kiehl JT, Romero MJ, Norman AG, Jones KM (2008) Appl Phys Lett 93:123505

    Article  Google Scholar 

  • Gonfa BA, Kim MR, Delegan N, Tavares AC, Izquierdo R, Wu N, El Khakani MA, Ma D (2015) Nanoscale 7:10039–10049

    Article  Google Scholar 

  • Hagfeldt A, Boschloo G, Sun L, Kloo L, Pettersson H (2010) ChemRev 110:6595–6663

    Google Scholar 

  • Heo YW, Varadarajan V, Kaufman M, Kim K, Norton DP, Ren F, Fleming PH (2002) Appl Phys Lett 81:3046–3048

    Article  Google Scholar 

  • Hines MA, Scholes GD (2003) Adv Mater 15:1844–1849

    Article  Google Scholar 

  • Huang MH, Wu Y, Feick H, Tran N, Weber E, Yang P (2001) Adv Mater 13:113–116

    Article  Google Scholar 

  • Ibupoto ZH, Khun K, Eriksson M, AlSalhi M, Atif M, Ansari A, Willander M (2013) Materials 8:3584–3597

    Article  Google Scholar 

  • Ip AH, Thon SM, Hoogland S, Voznyy O, Zhitomirsky D, Debnath R, Levina L, Rollny LR, Carey GH, Fischer A, Kemp KW, Kramer IJ, Ning Z, Labelle J, Chou K, Amassian A, Sargent EH (2012) Nat Nanotechnol 7:9

    Article  Google Scholar 

  • Jacoby M 2016 The future of low cost solar cells, chemical and engineering news, 94 30–35.

  • Jiang Y, Meng XM, Yiu YC, Liu J, Ding JX, Lee CS and Lee ST 2004 J. Phys. Chem. B, 108 2784–2787.

  • Johansson PG, Rowley JG, Taheri A, Meyer GJ (2011) Langmuir 27:14522–14531

    Article  Google Scholar 

  • Juan D, Jin X, Jian XJ, Mei LD, Yan Hong LQ, Bo M, Qiang C (2015) Phys Lett 32:078401

    Google Scholar 

  • Kamat PV (2008) J Phys Chem C 1121:8737–8753

    Google Scholar 

  • Kamat PV (2013) J Phys Chem Lett 4:908–918

    Article  Google Scholar 

  • Kamruzzaman M, Zapien JA (2017) J Nanoscience and Nanotechnology 17:561–572

  • Kim S, Jeong MC, Oh BY, Lee W, Myoung JM (2006) J Cryst Growth 290:485–489

    Article  Google Scholar 

  • Kim JY, Lee K, Coates NE, Moses D, Nguyen T, Dante M, Heeger AJ (2007) Science 317:222

    Article  Google Scholar 

  • Kongkanand A, Tvrdy K, Takechi K, Kuno M, Kamat PK (2008) J Am Chem Soc 130:4007–4015

    Article  Google Scholar 

  • Krishan B, Arato A, Cardenas E, Das Roy TK, Castillo GA (2008) Appl Surf Sci 254:3200

    Article  Google Scholar 

  • Liu X, Wu X, Cao H, Chang RPH (2004) J Appl Phys 95:3141–3147

    Article  Google Scholar 

  • Luan CY, Vaneski A, Susha AS, Xu X, En Wang H, Chen X, Xu J, Zhang WJ, Lee CS, Rogach AL, Zapien JA (2011) Nanoscale Res Lett 6:340

    Article  Google Scholar 

  • Luther JM, Gao J, Lioyd MT, Semonin QE, Beard MC, Nozik AJ (2010) Adv Mater 22:3704–3707

    Article  Google Scholar 

  • Mathew S, Yella A, Gao P, Humphry-Baker R, Curchod Basile FE, Ashari-Astani N, Tavernelli I, Rothlisberger U, Nazeeruddin Md K, Gratzel M (2014) Nat Chem 6:242–247

    Article  Google Scholar 

  • McDaniel H, Fuke N, Makarov SN, Pietryga MJ, Klimov IV (2013) Nat Commun 4(2887):1–10

    Google Scholar 

  • McElroy N, Espinbarro-Valazquez D, Lewis E, Haigh S, O'Brien P, Binks DJ (2014) Thin Solid Films 560:65–70

    Article  Google Scholar 

  • Mehrabian M, Aslyousefzadeh S, Maleki MH (2015) Journal of the Korean Physical Society 66:1527–1531

    Article  Google Scholar 

  • Milliron DJ, Gur I, Alivisatos AP (2005) MRS Bull 30:41–44

    Article  Google Scholar 

  • Mora-Sero I, Gimenez S, Fabregat-Santiago F, Gomez R, Shen Q, Toyoda T, Bisquert J (2009) Acc Chem Res 42:1848–1857

    Article  Google Scholar 

  • Muthumari S, Devi G, Revathi P, Ijayalakshmi R, Sanjeeviraja C (2012) JAppl Sci 12:1722–1725

    Google Scholar 

  • Niitsoo O, Sarkar SK, Pejoux C, Ruhle S, Cahen D, Hodes G (2006) J Photochem Photobiol A 181:306–313

    Article  Google Scholar 

  • Ning Z, Voznyy O, Pan J, Hoogland S, Adinolfi V, Xu J, Li M, Kirmani RA, Sun JP, Minor J, Kemp KW, Dong D, Rollny L, Labelle A, Carey G, Sutherland B, Hill I, Amassian A, Liu H, Tang J, Bakr OM, Sargent HE (2014) Nat Mater 4007:1–7

    Google Scholar 

  • Norris DJ, Leschkies KS, Divakar R, Basu J, Enache Pommer E, Boercker JE, Carter CB, Kortshagen UR, Aydil ES (2007) Nano Lett 7:1793–1798

    Article  Google Scholar 

  • Nozik A (2002) Phys E 14:115–120

    Article  Google Scholar 

  • O’Regan B, Grätzel M (1991) Nature 353:737–740

    Article  Google Scholar 

  • Olson DC, Shaheen SE, White MS, Mitchell DJ, van Hest MFAM, Collins RT, Ginley DS (2007) Adv Funct Mater 17:264–269

    Article  Google Scholar 

  • Paulose P, Shankar K, Yoriya S, Prakasam HE, Varghese OK (2006) J Phys Chem B 110:16179–16184

    Article  Google Scholar 

  • Pradhan SK, Reucroft PJ, Yang F, Dozier A (2003) JCryst Growth 256:83–88

    Article  Google Scholar 

  • Robel SV, Kuno M, Kamat PV (2006) J Am Chem Soc 128:2385–2393

    Article  Google Scholar 

  • Ruhle S, Shalom M, Zaban A (2010) Chem Phys Chem 11:2290–2304

    Article  Google Scholar 

  • Shi S, Li Y, Li X, Wang H (2015) Mater Horiz 2:378–405

    Article  Google Scholar 

  • Sun BQ, Marx E, Greenham NC (2003) Nano Lett 3:961

    Article  Google Scholar 

  • Tang J, Kyle WK, Hoogland S, Jeong SK, Liu H, Levina L, Furukawa M, Wang X, Debnath R, Cha D, Chou WK, Fischer A, Amassian A, Asbury BJ, Sargent HE (2011) Nat Mater 10:765–771

    Article  Google Scholar 

  • Tian ZR, Voigt JA, Liu J, Mckenzie B, Xu H (2003) J Am Chem Soc 125:12384–12385

    Article  Google Scholar 

  • Tian JJ, Gao R, Zhang QF, Zhang SG, Li YW, Lan JL, Qu XH, Cao GZ (2012) JPhys Chem C 116:18655–18662

    Article  Google Scholar 

  • Tvrdy K, Frantsuzov PA, Kamat PV (2011) Proc Nat Acad Sci U S A 108:29–34

    Article  Google Scholar 

  • Umar K, Karunagaran B, Suh EK, Hahn YB (2006) Nanotechnology 17:4072

    Article  Google Scholar 

  • Wang K, Chen JJ, Zhou WL, Zhang Y, Yan YF, Pern J, Mascarenhas A (2008) Adv Mater 20:3248–3253

    Article  Google Scholar 

  • Wang J, Feng H, Fan W, Chen K, Yang Q (2013a) Advances in Materials Physics and Chemistry 3:289–294

    Article  Google Scholar 

  • Wang H, Kubo T, Nakazaki J, Kinoshita T, Segawa H (2013b) J Phys Chem Lett 4:2455–2460

    Article  Google Scholar 

  • Xu S, Wang ZL (2011) Nano Res 4:1013

    Article  Google Scholar 

  • Xu C, Xu G, Liu Y, Wang G (2002) Solid State Commun 122:175–179

    Article  Google Scholar 

  • Xu J, Luan CY, Tang YB, Chen X, Zapien JA, Zhang WJ, Kwong HL, Meng XM, Lee ST, Lee CS (2010) ACS Nano 4:6064–6070

    Article  Google Scholar 

  • Xu J, Yang X, Yang QD, Wong TL, Lee ST, Zhang WJ, Lee CS (2012) J Mater Chem 22:13374

    Article  Google Scholar 

  • Yu P, Zhu K, Norman AG, Ferrere S, Frank AJ, Nozik AJ (2006) J Phys Chem B 110:25451–25454

    Article  Google Scholar 

  • Yu L, Jia J, Yi G, Han M (2016) RSC Adv 6:33279

    Article  Google Scholar 

  • Zhang SB, Wei SH, Zunger A (2001) Phys Rev Rev B 63:075205

    Article  Google Scholar 

  • Zhang Z, Lu M, Xu H, Chin WS (2008) Chem Eur J 13:632–638

    Article  Google Scholar 

  • Zhang H, Mao J, He H, Zhang D, Zhu L, Xie F, Won KS, Grätzel M, Choy WCH (2015) Adv Energy Mater 5:1501354

    Article  Google Scholar 

  • Zhao HC, Harney JP, Huang YT, Yum JH, Nazeeruddin MK, Gratzel M, Tsai MK, Rochford J (2012) J Inorg Chem 51:1–3

    Article  Google Scholar 

  • Zhitomirsky D, Voznyy O, Levina L, Hoogland S, Kemp WK, Ip HA, Thon MS, Sargent HE (2014) Nat Commun 5(3803):1–7

    Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the Research Grants Council of the Hong Kong, SAR, China (Project No. CityU 122812). The authors would like to thank Mr. Zhang Zhenyu for helping TEM images.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M Kamruzzaman or J A Zapien.

Ethics declarations

Conflict of interest

There is no conflict of interest in the present study for any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamruzzaman, M., Zapien, J.A. Synthesis and characterization of ZnO/ZnSe NWs/PbS QDs solar cell. J Nanopart Res 19, 125 (2017). https://doi.org/10.1007/s11051-016-3729-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-016-3729-y

Keywords

Navigation