Skip to main content
Log in

Porous sulfated metal oxide SO4 2−/Fe2O3 as an anode material for Li-ion batteries with enhanced electrochemical performance

  • Brief Communication
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Sulfated metal oxide SO4 2−/Fe2O3 was prepared by a novel facile sol–gel method combined with a subsequent heating treatment process. The as-synthesized products were analyzed by XRD, FTIR, and FE-SEM. Compared with the unsulfated Fe2O3, the agglomeration of particles has been alleviated after the incorporation of SO4 2−. Interestingly, the primary particle size of the SO4 2−/Fe2O3 (about 5 nm) is similar to its normal counterparts even after the calcination treatment. More importantly, SO4 2−/Fe2O3 exhibits a porous architecture, which is an intriguing feature for electrode materials. When used as anode materials in Li-ion batteries, SO4 2−/Fe2O3 delivered a higher reversible discharge capacity (992 mAh g−1), with smaller charge transfer resistance, excellent rate performance, and better cycling stability than normal Fe2O3. We believed that the presence of SO4 2− and porous architecture should be responsible for the enhanced electrochemical performance, which could provide more continuous and accessible conductive paths for Li+ and electrons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  • Arico AS, Bruce P, Scrosati B, Tarascon JM, van Schalkwijk W (2005) Nanostructured materials for advanced energy conversion and storage devices. Nature Mater 4:366–377. doi:10.1038/nmat1368

    Article  Google Scholar 

  • Barakat NAM, Khil MS, Sheikh FA, Kim HY (2008) Synthesis and optical properties of two cobalt oxides (CoO and Co3O4) nanofibers produced by electrospinning process. J Phys Chem C 112:12225–12233. doi:10.1021/jp8027353

    Article  Google Scholar 

  • Besenhard JO, Yang J, Winter M (1997) Will advanced lithium-alloy anodes have a chance in lithium-ion batteries. J Power Sources 68:87–90. doi:10.1016/s0378-7753(96)02547-5

    Article  Google Scholar 

  • Chen JS, Archer LA, Wen Lou X (2011) SnO2 hollow structures and TiO2 nanosheets for lithium-ion batteries. J Mater Chem 21:9912–9924. doi:10.1039/c0jm04163g

    Article  Google Scholar 

  • Chen JS, Zhu T, Yang XH, Yang HG, Lou XW (2010) Top-down fabrication of alpha-Fe2O3 single-crystal nanodiscs and microparticles with tunable porosity for largely improved lithium storage properties. J Am Chem Soc 132:13162–13164. doi:10.1021/ja1060438

    Article  Google Scholar 

  • Dambournet D, Belharouak I, Amine K (2010) Tailored preparation methods of TiO2 anatase, rutile, brookite: mechanism of formation and electrochemical properties. Chem Mater 22:1173–1179. doi:10.1021/cm902613h

    Article  Google Scholar 

  • Du N et al (2007) Porous Co3O4 nanotubes derived from Co4(CO)12 clusters on carbon nanotube templates: a highly efficient material for Li-battery applications. Adv Mater 19:4505–4509. doi:10.1002/adma.200602513

    Article  Google Scholar 

  • Erjavec B, Dominko R, Umek P, Sturm S, Pejovnik S, Gaberscek M, Jamnik J (2008) RuO2-wired high-rate nanoparticulate TiO2 (anatase): suppression of particle growth using silica. Electrochem Commun 10:926–929. doi:10.1016/j.elecom.2008.04.006

    Article  Google Scholar 

  • Gnedenkov SV et al (2015) Nanostructured zirconia-doped titania as the anode material for lithium-ion battery. Russ J Inorg Chem 60:658–664. doi:10.1134/s0036023615060054

    Article  Google Scholar 

  • Gurunathan K, Amalnerkar DP, Trivedi DC (2003) Synthesis and characterization of conducting polymer composite (PAn/TiO2) for cathode material in rechargeable battery. Mater Lett 57:1642–1648. doi:10.1016/s0167-577x(02)01045-5

    Article  Google Scholar 

  • Gutiérrez-Báez R, Toledo-Antonio JA, Cortes-Jácome MA, Sebastian PJ, Vázquez A (2004) Effects of the SO4 groups on the textural properties and local order deformation of SnO2 rutile structure. Langmuir 20:4265–4271. doi:10.1021/la036364x

    Article  Google Scholar 

  • Jamnik J, Maier J (2003) Nanocrystallinity effects in lithium battery materials. Phys Chem Chem Phys 5:5215–5235. doi:10.1039/b309130a

    Article  Google Scholar 

  • Jeong J-H, D-w J, Shin EW, Oh E-S (2014) Boron-doped TiO2 anode materials for high-rate lithium ion batteries. J Alloy Compound 604:226–232. doi:10.1016/j.jallcom.2014.03.069

    Article  Google Scholar 

  • Kang Z, Ma H, Wang B (2009) Removal of thiophene from coking benzene over SO4 2−/Fe2O3 solid acid under mild conditions. Ind Eng Chem Res 48:9346–9349. doi:10.1021/ie901075t

    Article  Google Scholar 

  • Larcher D, Bonnin D, Cortes R, Rivals I, Personnaz L, Tarascon JM (2003a) Combined XRD, EXAFS, and Mössbauer studies of the reduction by lithium of α-Fe2O3 with various particle sizes. J Electrochem Soc 150:A1643. doi:10.1149/1.1622959

    Article  Google Scholar 

  • Larcher D, Masquelier C, Bonnin D, Chabre Y, Masson V, Leriche JB, Tarascon JM (2003b) Effect of particle size on lithium intercalation into α-Fe2O3. J Electrochem Soc 150:A133–A139. doi:10.1149/1.1528941

    Article  Google Scholar 

  • Liu H, Wang G, Park J, Wang J, Liu H, Zhang C (2009) Electrochemical performance of α-Fe2O3 nanorods as anode material for lithium-ion cells. Electrochim Acta 54:1733–1736. doi:10.1016/j.electacta.2008.09.071

    Article  Google Scholar 

  • Liu X, Zhao J, Hao J, Su B-L, Li Y (2013) 3D ordered macroporous germanium fabricated by electrodeposition from an ionic liquid and its lithium storage properties. J Mater Chem A 1:15076–15081. doi:10.1039/c3ta12923c

    Article  Google Scholar 

  • Liu Y, Bai J, Ma X, Li J, Xiong S (2014) Formation of quasi-mesocrystal ZnMn2O4 twin microspheres via an oriented attachment for lithium-ion batteries. J Mater Chem A 2:14236–14244. doi:10.1039/c4ta02950j

    Article  Google Scholar 

  • Morales J, Sánchez L, Martín F, Berry F, Ren X (2005) Synthesis and characterization of nanometric iron and iron-titanium oxides by mechanical milling. J Electrochem Soc 152:A1748–A1754. doi:10.1149/1.1972812

    Article  Google Scholar 

  • NuLi Y, Zeng R, Zhang P, Guo Z, Liu H (2008) Controlled synthesis of α-Fe2O3 nanostructures and their size-dependent electrochemical properties for lithium-ion batteries. J Power Sources 184:456–461. doi:10.1016/j.jpowsour.2008.03.004

    Article  Google Scholar 

  • Poizot P, Laruelle S, Grugeon S, Dupont L, Tarascon JM (2000) Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 407:496–499. doi:10.1038/35035045

    Article  Google Scholar 

  • Ren Y, Li J, Yu J (2014) Enhanced electrochemical performance of TiO2 by Ti3+ doping using a facile solvothermal method as anode materials for lithium-ion batteries. Electrochim Acta 138:41–47. doi:10.1016/j.electacta.2014.06.068

    Article  Google Scholar 

  • Sun B, Horvat J, Kim HS, Kim W-S, Ahn J, Wang G (2010) Synthesis of mesoporous α-Fe2O3 nanostructures for highly sensitive gas sensors and high capacity anode materials in lithium ion batteries. J Phys Chem C 114:18753–18761. doi:10.1021/jp102286e

    Article  Google Scholar 

  • Thi TV, Rai AK, Gim J, Kim S, Kim J (2014) Effect of Mo6+ doping on electrochemical performance of anatase TiO2 as a high performance anode material for secondary lithium-ion batteries. J Alloy Compound 598:16–22. doi:10.1016/j.jallcom.2014.02.019

    Article  Google Scholar 

  • Wang D et al (2009) Self-assembled TiO2-graphene hybrid nanostructures for enhanced Li-ion insertion. ACS Nano 3:907–914. doi:10.1021/nn900150y

    Article  Google Scholar 

  • Wang G, Gou X, Horvat J, Park J (2008) Facile synthesis and characterization of iron oxide semiconductor nanowires for gas sensing application. J Phys Chem C 112:15220–15225. doi:10.1021/jp803869e

    Article  Google Scholar 

  • Wang Y, Su D, Ung A, Ahn JH, Wang G (2012) Hollow CoFe2O4 nanospheres as a high capacity anode material for lithium ion batteries. Nanotechnology 23:055402. doi:10.1088/0957-4484/23/5/055402

    Article  Google Scholar 

  • Wu Y, Qin L, Zhang G, Chen L, Guo X, Liu M (2013) Porous solid superacid SO4 2−/Fe2–xZrxO3 Fenton catalyst for highly effective oxidation of X-3B under visible light. Ind Eng Chem Res 52:16698–16708. doi:10.1021/ie402238s

    Article  Google Scholar 

  • Xu X, Cao R, Jeong S, Cho J (2012) Spindle-like mesoporous alpha-Fe2O3 anode material prepared from MOF template for high-rate lithium batteries. Nano Lett 12:4988–4991. doi:10.1021/nl302618s

    Article  Google Scholar 

  • Yan N et al (2012) Co3O4 nanocages for high-performance anode material in lithium-ion batteries. J Phys Chem C 116:7227–7235. doi:10.1021/jp2126009

    Article  Google Scholar 

  • Zhang W, Gong Y, Mellott NP, Liu D, Li J (2015) Synthesis of nickel doped anatase titanate as high performance anode materials for lithium ion batteries. J Power Sources 276:39–45. doi:10.1016/j.jpowsour.2014.11.098

    Article  Google Scholar 

  • Zhu X, Zhu Y, Murali S, Stoller MD, Ruoff RS (2011) Nanostructured reduced graphene oxide/Fe2O3 composite as a high-performance anode material for lithium ion batteries ACS Nano 5:3333-3338. doi: 10.1021/nn200493r

  • Zhu XJ et al (2009) Highly porous reticular tin–cobalt oxide composite thin film anodes for lithium ion batteries. J Mater Chem 19:8360–8365. doi:10.1039/b913993a

    Article  Google Scholar 

Download references

Acknowledgements

A part of this work was sponsored by an innovative training program for college students in Shanghai, Shanghai University of Engineering Science (cs1604008) and supported by the Shanghai Municipal Education Commission (High-energy Beam Intelligent Processing and Green Manufacturing) and National Natural Science Foundation of China (11602134). Parts of this work were carried out in the Characterization Facility, University of Minnesota, which receives partial support from the NSF through the MRSEC program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bohejin Tang.

Ethics declarations

All authors confirm that we have mentioned all organizations that funded our research in the acknowledgements section of our paper, including grant numbers.

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Lv, Q., Huang, X. et al. Porous sulfated metal oxide SO4 2−/Fe2O3 as an anode material for Li-ion batteries with enhanced electrochemical performance. J Nanopart Res 19, 5 (2017). https://doi.org/10.1007/s11051-016-3709-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-016-3709-2

Keywords

Navigation