Skip to main content

Advertisement

Log in

Perovskite semiconductor La(Ni0.75W0.25)O3 nanoparticles for visible-light-absorbing photocatalytic material

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

La(Ni0.75W0.25)O3 perovskite oxide was prepared via the sol–gel Pechini route. The pure crystalline phase was verified via X-ray diffraction measurements and Rietveld structure refinements. Some measurements were applied to characterize the surface of the nanoparticles such as transmission electron microscopy, scanning electron microscope, energy-dispersive X-ray spectroscopy, specific surface area, and X-ray photo-electron spectroscopy measurements. The optical measurement confirmed that this perovskite oxide can absorb the visible light presenting low band energy of 2.41 eV. The d–d allowed transitions in Ni2+-O octahedral have great contributions to the narrow band-gap. The Ni2+-containing perovskite was applied as a photocatalyst showing the desirable photodegradation ability for methylene blue solutions under the excitation of visible-light. The photocatalysis activities were discussed in the relationship with its special perovskite-type structure such as the NiO6 color centers and multivalent cation ions etc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Alvarez I, Martínez JL, Veiga ML, Pico C (1996) Synthesis, structural characterization, and electronic properties of the LaNi1−xWxO3 (0 ≤ x ≤ 0.25) perovskite-like system. J Solid State Chem 125:47–53

    Article  Google Scholar 

  • Amorín H, Hungría T, Landa-Cánovas AR, Torres M, Dollé M, Algueró M, Castro A (2011) Nanopowders of ferroic oxides for magnetoelectric composites. J Nanopart Res 13:4189–4200

    Article  Google Scholar 

  • Asai K, Sekizawa H, Mizushima K, Iida S (1977) Magnetic properties of LaNi1−xCoxO3 (0 ≤ x ≤ 0.5). J Phys Soc Jpn 43:1093–1097

    Article  Google Scholar 

  • Barros A, Deloncle R, Deschamp J, Boutinaud P, Chadeyron G, Mahiou R, Cavalli E, Brik MG (2014) Optical properties and electronic band structure of BiMg2PO6, BiMg2VO6, BiMg2VO6:Pr3+ and BiMg2VO6:Eu3+. Opt Mater 36:1724–1729

    Article  Google Scholar 

  • Carley AF, Jackson SD, O’Shea JN, Roberts MW (1999) The formation and characterisation of Ni3+-an X-ray photoelectron spectroscopic investigation of potassium-doped Ni(110)–O. Surf Sci 440:L868–L874

    Article  Google Scholar 

  • Chen W, Duan GR, Liu TY, Jia ZM, Liu XH, Chen SM, Yang XJ (2015) Synthesis of homogeneous one-dimensional NixCd1−xS nanorods with enhanced visible-light response by ethanediamine-assisted decomposition of complex precursors. J Mater Sci 50:3920–3928

    Article  Google Scholar 

  • Cui B, Lin H, Li JB, Li X, Yang J, Tao J (2008) Core-ring structured NiCo2O4 nanoplatelets: synthesis, characterization, and electrocatalytic applications. Adv Funct Mater 18:1440–1447

    Article  Google Scholar 

  • Delobelle P, Wang GS, Fribourg-Blanc E, Remiens D (2007) Indentation modulus and hardness of Pb(Zr, Ti)O3 sol–gel films deposited on Pt and LaNiO3 electrodes: an estimation of the C Dij compliances. J Eur Ceram Soc 27:223–230

    Article  Google Scholar 

  • Devi LG, Kottam N, Kumar SG, Rajashekhar KE (2010) Preparation, characterization and enhanced photocatalytic activity of Ni2+ doped titania under solar light. Cent Eur J Chem 8:142–148

    Google Scholar 

  • Dudric R, Vladescu A, Rednic V, Neumann M, Deac IG, Tetean R (2014) XPS study on La0.67Ca0.33Mn1−xCoxO3 compounds. J Mol Struct 1073:66–70

    Article  Google Scholar 

  • Ge L, Han CC, Liu J (2011) Novel visible light-induced g-C3N4/Bi2WO6 composite photocatalysts for efficient degradation of methyl orange. Appl Catal B 108:100–107

    Article  Google Scholar 

  • Grabowska E (2016) Selected perovskite oxides: characterization, preparation and photocatalytic properties-A review. Appl Catal B 186:97–126

    Article  Google Scholar 

  • Grinberg I, West DV, Torres M, Gou G, Stein DM, Wu L, Chen G, Gallo AR (2013) Perovskite oxides for visible-light-absorbing ferroelectric and photovoltaic materials. Nature 503:509–521

    Article  Google Scholar 

  • Jia L, Li J, Fang W (2010) Effect of H2/CO2 mixture gas treatment temperature on the activity of LaNiO3 catalyst for hydrogen production from formaldehyde aqueous solution under visible light. J Alloys Compd 489:L13–L16

    Article  Google Scholar 

  • Kanhere P, Chen Z (2014) A review on visible light active perovskite-based photocatalysts. Molecules 19:19995–20022

    Article  Google Scholar 

  • Kato H, Kudo A (2001) Water splitting into H2 and O2 on alkali tantalate photocatalysts ATaO3 (A = Li, Na, and K). J Phys Chem B 105:4285–4292

    Article  Google Scholar 

  • Kondo M, Kurihara K (2001) Sintering behavior and surface microstructure of PbO-rich Pb(Ni1/3Nb2/3)O3–PbZrO3 ceramics. J Am Ceram Soc 84:2469–2474

    Article  Google Scholar 

  • Kumar RD, Subramanian M, Tanemura M, Jayavel R (2014) Synthesis, annealing effect and magnetic behavior of TbMnO3 nanoparticles. J Nanopart Res 16:1–11

    Google Scholar 

  • Lang XY, Jiang Q (2007) Size and interface effects on curie temperature of perovskite ferroelectric nanosolids. J Nanopart Res 9:595–603

    Article  Google Scholar 

  • Li Y, Yao S, Wen W, Xue L, Yan Y (2010) Sol–gel combustion synthesis and visible-light-driven photocatalytic property of perovskite LaNiO3. J Alloys Compd 491:560–564

    Article  Google Scholar 

  • Liu Y, Wang Z, Fan W, Geng Z, Feng L (2014) Enhancement of the photocatalytic performance of Ni-loaded TiO2 photocatalyst under sunlight. Ceram Int 40:3887–3893

    Article  Google Scholar 

  • Marco JF, Gancedo JR, Gracia M, Gautier JL, Rios E, Berry FJ (2000) Characterization of the nickel cobaltite, NiCo2O4, prepared by several methods: an XRD, XANES, EXAFS, and XPS study. J Solid State Chem 15:74–81

    Article  Google Scholar 

  • Ni L, Tanabe M, Irie H (2013) A visible-light-induced overall water-splitting photocatalyst: conduction-band-controlled silver tantalate. Chem Commun 49:10094–10100

    Article  Google Scholar 

  • Niishiro R, Kato H, Kudo A (2005) Nickel and either tantalum or niobium-codoped TiO2 and SrTiO3 photocatalysts with visible-light response for H2 or O2 evolution from aqueous solutions. Phys Chem Chem Phys 7:2241–2245

    Article  Google Scholar 

  • Ohko Y, Hashimoto K, Fujishima A (1997) Kinetics of photocatalytic reactions under extremely low-intensity uv illumination on titanium dioxide thin films. J Phys Chem A 101:8057–8062

    Article  Google Scholar 

  • Sang Y, Kuai L, Chen C, Fang Z, Geng B (2014) Fabrication of a visible-light-driven plasmonic photocatalyst of AgVO3@AgBr@Ag nanobelt heterostructures. ACS Appl Mater Interfaces 6:5061–5069

    Article  Google Scholar 

  • Subramanian MA, Rao GVS (1980) Synthesis and electrical properties of perovskite oxides, LnB0.75B0.25O3. J Solid State Chem 31:329–335

    Article  Google Scholar 

  • Swagata B, Pillai SC, Falaras P, O’Shea KE, Byrne JA, Dionysiou DD (2014) New insights into the mechanism of visible light photocatalysis. J Phys Chem Lett 5:2543–2554

    Article  Google Scholar 

  • Tanaka H, Misono M (2001) Advances in designing perovskite catalysts. Curr Opin Solid State Mater Sci 5:381–388

    Article  Google Scholar 

  • Wang D, Tang J, Zou Z, Ye J (2005) Photophysical and photocatalytic properties of a new series of visible-light-driven photocatalysts M3V2O8 (M = Mg, Ni, Zn). J Chem Mater 17:5177–5182

    Article  Google Scholar 

  • Wei X, Xu G, Ren Z, Xu C, Weng W, Shen G, Han G (2010) Single-crystal-like mesoporous SrTiO3 spheres with enhanced photocatalytic performance. J Am Ceram Soc 93:1297–1305

    Article  Google Scholar 

  • Yao W, Ye J (2006) Photocatalytic properties of a novel layered photocatalys CsLaSrNb2NiO9. Catal Lett 110:139–142

    Article  Google Scholar 

  • Zhang X (2014) Synthesis of Ni doped InVO4 for enhanced photocatalytic hydrogen evolution using glucose as electron donor. Catal Lett 144:1253–1257

    Article  Google Scholar 

  • Zhang X, Wang B, Wang X, Xiao X, Dai Z, Wu W, Zheng J, Ren F, Jiang C (2015) Preparation of M@BiFeO3 nanocomposites (M = Ag, Au) bowl arrays with enhanced visible light photocatalytic activity. J Am Ceram Soc 98:2255–2263

    Article  Google Scholar 

  • Zhu WL, Feng XQ, Wu ZH, Man ZY (2002) On the annealing mechanism in PbWO4. Cryst Phys B 324:53–58

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the framework of international cooperation program managed by National Research Foundation of Korea (2015K2A1A2069191), and by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongde Xie or Hyo Jin Seo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, L., Xie, H., Pu, Y. et al. Perovskite semiconductor La(Ni0.75W0.25)O3 nanoparticles for visible-light-absorbing photocatalytic material. J Nanopart Res 19, 2 (2017). https://doi.org/10.1007/s11051-016-3519-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-016-3519-6

Keywords

Navigation