Skip to main content
Log in

Nanomaterial–protein interactions: the case of pristine and functionalized carbon nanotubes and porcine gastric mucin

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Mucus represents a serious obstacle that prevents the penetration of drug carrier's transport across the mucus barrier. This study highlights the interaction between mucin glycoprotein, mucin from porcine stomach Type III (PGM) and different pristine and functionalized single-wall and multi-wall carbon nanotubes (CNTs), under physiological conditions, in order to investigate the affinity of different CNTs to mucin. This aspect could be of the utmost importance for the use of CNTs for biomedical purposes. The interaction between CNTs and PGM was investigated by using different techniques like fluorescence steady-state spectroscopy, thermogravimetric analysis (TGA), dynamic light scattering (DLS), circular dichroism (CD), electrophoresis, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). We demonstrated that mucin has impressive capabilities for binding CNTs in physiological solutions. Moreover, we proved that the nanomaterial–protein interaction is influenced by the different natures of the tubes (SW and MW) and by their different functionalizations (pristine and oxidized CNTs).

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bansil R, Turner BS (2006) Mucin structure, aggregation, physiological functions and biomedical applications. Curr Opin Colloid Interface Sci 11:164–170. doi:10.1016/j.cocis.2005.11.001

    Article  Google Scholar 

  • Belgorodsky B, Drug E, Fadeev L et al (2010) Mucin complexes of nanomaterials: first biochemical encounter. Small 6:262–269. doi:10.1002/smll.200900637

    Article  Google Scholar 

  • Biale C, Mussi V, Valbusa U, et al (2009) Carbon nanotubes for targeted drug delivery. 2009 9th Ieee Conf Nanotechnol 644–646

  • Bomboi F, Bonincontro A, La Mesa C, Tardani F (2011) Interactions between single-walled carbon nanotubes and lysozyme. J Colloid Interface Sci 355:342–347. doi:10.1016/j.jcis.2010.12.026

    Article  Google Scholar 

  • Carlstedt I, Sheehan J, Corfield A, Gallagher J (1985) Mucous glycoproteins: a gel of a problem. Essays Biochem 20:40–76

    Google Scholar 

  • Chen EYT, Wang YC, Chen CS, Chin WC (2010) Functionalized positive nanoparticles reduce mucin swelling and dispersion. PLoS ONE. doi:10.1371/journal.pone.0015434

    Google Scholar 

  • Chen EY, Daley D, Wang Y-C et al (2012) Functionalized carboxyl nanoparticles enhance mucus dispersion and hydration. Sci Rep. doi:10.1038/srep00211

    Google Scholar 

  • Doerner KC, White BA (1990) Detection of glycoproteins separated by nondenaturing polyacrylamide gel electrophoresis using the periodic acid-Schiff stain. Anal Biochem 187:147–150

    Article  Google Scholar 

  • Hattrup CL, Gendler SJ (2008) Structure and function of the cell surface (tethered) mucins. Annu Rev Physiol 70:431–457. doi:10.1146/annurev.physiol.70.113006.100659

    Article  Google Scholar 

  • He H, Pham-Huy LA, Dramou P et al (2013) Carbon nanotubes: applications in pharmacy and medicine. Biomed Res Int 2013:578290. doi:10.1155/2013/578290

    Google Scholar 

  • Lieleg O, Vladescu I, Ribbeck K (2010) Characterization of particle translocation through mucin hydrogels. Biophys J 98:1782–1789. doi:10.1016/j.bpj.2010.01.012

    Article  Google Scholar 

  • Liu P (2013) Modification strategies for carbon nanotubes as a drug delivery system. Ind Eng Chem Res 52:13517–13527. doi:10.1021/ie402360f

    Article  Google Scholar 

  • Liu Z, Tabakman S, Welsher K, Dai H (2009) Carbon nanotubes in biology and medicine: in vitro and in vivo detection, imaging and drug delivery. Nano Res 2:85–120. doi:10.1007/s12274-009-9009-8

    Article  Google Scholar 

  • Loomis RE, Prakobphol A, Levine MJ et al (1987) Biochemical and biophysical comparison of two mucins from human submandibular-sublingual saliva. Arch Biochem Biophys 258:452–464

    Article  Google Scholar 

  • MacAdam A (1993) The effect of gastro-intestinal mucus on drug absorption. Adv Drug Deliv Rev 11:201–220

    Article  Google Scholar 

  • MacArthur MW, Thornton JM (1991) Influence of proline residues on protein conformation. J Mol Biol 218:397–412

    Article  Google Scholar 

  • Marriott C, Gregory NP (1990) Mucus physiology and pathology. In: Lenaerts V, Gurny R (eds) Bioadhesive drug delivery systems. CRC Press, Boca Raton, pp 1–24

    Google Scholar 

  • Mussi V, Biale C, Visentin S et al (2010) Raman analysis and mapping for the determination of COOH groups on oxidized single walled carbon nanotubes. Carbon 48:3391–3398

    Article  Google Scholar 

  • Ronish EW, Krimm S (1974) The calculated circular dichroism of polyproline II in the polarizability approximation. Biopolymers 13:1635–1651

    Article  Google Scholar 

  • Saifuddin N, Raziah AZ, Junizah AR (2013) Carbon nanotubes: a review on structure and their interaction with proteins. J Chem 2013:1–18. doi:10.1155/2013/676815

    Article  Google Scholar 

  • Scawen M, Allen A (1977) The action of proteolytic enzymes on the glycoprotein from pig gastric mucus. Biochem J 163:363–368

    Article  Google Scholar 

  • Sigurdsson HH, Kirch J, Lehr CM (2013) Mucus as a barrier to lipophilic drugs. Int J Pharm 453:56–64. doi:10.1016/j.ijpharm.2013.05.040

    Article  Google Scholar 

  • Snary D, Allen A, Pain RH (1970) Structural studies on gastric mucoproteins: lowering of molecular weight after reduction with 2-mercaptoethanol. Biochem Biophys Res Commun 40:844–851

    Article  Google Scholar 

  • Visentin S, Barbero N, Musso S et al (2010) A sensitive and practical fluorimetric test for CNT acidic site determination. Chem Commun 46:1443–1445

    Article  Google Scholar 

  • Viterbo D, Croce G, Frache A et al (2004) Structural characterization of siliceous spicules from marine sponges 86:526–534. doi:10.1016/S0006-3495(04)74131-4

    Google Scholar 

  • Wang R, Mikoryak C, Chen E et al (2009) Gel electrophoresis method to measure the concentration of single-walled carbon nanotubes extracted from biological tissue. Anal Chem 81:2944–2952. doi:10.1021/ac802485n

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank University of Torino (Ricerca Locale ex-60 %, Bando 2014). SV acknowledges financial support by NANOMED project (PRIN 2010–2011, 2010FPTBSH_003) from Ministero dell’Istruzione, dell’Università e della Ricerca. NB thanks MIUR for partial financial support of her research Grant. The authors would like to acknowledge Chiara Tassone (Erasmus Placement).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sonja Visentin.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1574 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barbero, N., Marenchino, M., Campos-Olivas, R. et al. Nanomaterial–protein interactions: the case of pristine and functionalized carbon nanotubes and porcine gastric mucin. J Nanopart Res 18, 84 (2016). https://doi.org/10.1007/s11051-016-3388-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-016-3388-z

Keywords

Navigation