Skip to main content
Log in

Cellular uptake and distribution of graphene oxide coated with layer-by-layer assembled polyelectrolytes

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

We report a facile approach for the fabrication of a new class of graphene oxide (GO)-based nanoassemblies by layer-by-layer (LbL) technique. The single-layer thickness and intrinsic negatively charged carboxyl groups of GO nanosheets provide a natural platform for LbL assembly of polyelectrolyte nanofilms by electrostatic forces at mild and aqueous conditions. The general applicability of our approach is demonstrated by the preparation of GO nanoassemblies with sizes of 100–200 nm using various charged polyelectrolytes, including synthetic polymers, polypeptides, and DNA oligonucleotides. Systemic assessment of cytotoxicity and acute stress response show that no discernable signs of cytotoxicity are associated with exposure of GO and its nanoassemblies [GO/PLL (poly (l-lysine)), GO/PLL/PSS (poly(sodium-4-styrenesulfonate)), GO/PLL-PEG (PEGlayted PLL), GO/PLL/PLGA-PEG (PEGlayted poly (l-glutamic acid))] up to 1 μg/mL. Studies on cellular uptake and subcellular localization show that a representative nanoassembly, GO/PLL-PEG, can effectively cross cell membranes and localize mainly in lysosomal compartments, without induction of noticeable harmful effects as confirmed by detection of mitochondrial depolarization and lysosomal pH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Ariga K, Ji Q, Hill JP, Bando Y, Aono M (2012) Forming nanomaterials as layered functional structures toward materials nanoarchitectonics. NPG Asia Mater 4:e17

    Article  Google Scholar 

  • Becker AL, Johnston APR, Caruso F (2010) Layer-by-layer-assembled capsules and films for therapeutic delivery. Small 6:1836–1852

    Google Scholar 

  • Cai W, Piner RD, Stadermann FJ, Park S, Shaibat MA, Ishii Y, Yang D, Velamakanni A, An SJ, Stoller M, An J, Chen D, Ruoff RS (2008) Synthesis and solid-state NMR structural characterization of 13C-labeled graphite oxide. Science 321:1815–1817

    Article  Google Scholar 

  • Campo MA, Gabriel D, Kucera P, Gurny R, Lange N (2007) Polymeric photosensitizer prodrugs for photodynamic therapy. Photochem Photobiol 83:958–965

    Article  Google Scholar 

  • Chapel JP, Berret JF (2012) Versatile electrostatic assembly of nanoparticles and polyelectrolytes: coating, clustering and layer-by-layer processes. Curr Opin Colloid Interface Sci 17:97–105

    Article  Google Scholar 

  • Cui Y, Kim SN, Jones SE, Wissler LL, Naik RR, McAlpine MC (2010) Chemical functionalization of gaphene enabled by phage displayed peptides. Nano Lett 10:4559–4565

    Article  Google Scholar 

  • Decher G, Hong JD, Schmitt J (1992) Buildup of ultrathin multilayer films by a self-assembly process: III. Consecutively alternating adsorption of anionic and cationic polyelectrolytes on charged surfaces. Thin Solid Films 210:831–835

    Article  Google Scholar 

  • Dong H, Ding L, Yan F, Ji H, Ju H (2011) The use of polyethylenimine-grafted graphene nanoribbon for cellular delivery of locked nucleic acid modified molecular beacon for recognition of microRNA. Biomaterials 32:3875–3882

    Article  Google Scholar 

  • Dreyer DR, Park S, Bielawski CW, Ruoff RS (2010) The chemistry of graphene oxide. Chem Soc Rev 39:228–240

    Article  Google Scholar 

  • Duch MC, Budinger GRS, Liang YT, Soberanes S, Urich D, Chiarella SE, Campochiaro LA, Gonzalez A, Chandel NS, Hersam MC (2011) Minimizing oxidation and stable nanoscale dispersion improves the biocompatibility of graphene in the lung. Nano Lett 11:5201–5207

    Article  Google Scholar 

  • Feng L, Zhang S, Liu Z (2011) Graphene based gene transfection. Nanoscale 3:1252–1257

    Article  Google Scholar 

  • Feng L, Wu L, Qu X (2013) New horizons for diagnostics and therapeutic applications of graphene and graphene oxide. Adv Mater 25:168–186

    Article  Google Scholar 

  • Gollavelli G, Ling YC (2012) Multi-functional graphene as an in vitro and in vivo imaging probe. Biomaterials 33:2532–2545

    Article  Google Scholar 

  • Hammond PT (2012) Building biomedical materials layer-by-layer. Mater Today 15:196–206

    Article  Google Scholar 

  • Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339

    Article  Google Scholar 

  • Ji Q, Honma I, Paek SM, Akada M, Hill JP, Vinu A, Ariga K (2010) Layer-by-Layer films of graphene and ionic liquids for highly selective gas sensing. Angew Chem Int Edit 49:9737–9739

    Article  Google Scholar 

  • Klionsky DJ (2007) Autophagy: from phenomenology to molecular understanding in less than a decade. Nat Rev Mol Cell Biol 8:931–937

    Article  Google Scholar 

  • Kotov NA, Dekany I, Fendler JH (1995) Layer-by-layer self-assembly of polyelectrolyte-semiconductor nanoparticle composite films. J Phys Chem 99:13065–13069

    Article  Google Scholar 

  • Lewinski N, Colvin V, Drezek R (2008) Cytotoxicity of nanoparticles. Small 4:26–49

    Article  Google Scholar 

  • Li D, Muller MB, Gilje S, Kaner RB, Wallace GG (2008) Processable aqueous dispersions of graphene nanosheets. Nat Nanotechnol 3:101–105

    Article  Google Scholar 

  • Li C, Liu H, Sun Y, Wang H, Guo F, Rao S, Deng J, Zhang Y, Miao Y, Guo C, Meng J, Chen X, Li L, Li D, Xu H, Li B, Jiang C (2009) PAMAM nanoparticles promote acute lung injury by inducing autophagic cell death through the Akt-TSC2-mTOR signaling pathway. J Mol Cell Biol 1:37–45

    Article  Google Scholar 

  • Li Y, Zhou Y, Wang HY, Perrett S, Zhao Y, Tang Z, Nie G (2011) Chirality of glutathione surface coating affects the cytotoxicity of quantum dots. Angew Chem Int Ed 50:5860–5864

    Article  Google Scholar 

  • Li Y, Liu Y, Fu Y, Wei T, Le Guyader L, Gao G, Liu RS, Chang YZ, Chen C (2012) The triggering of apoptosis in macrophages by pristine graphene through the MAPK and TGF-beta signaling pathways. Biomaterials 33:402–411

    Article  Google Scholar 

  • Liu Z, Robinson JT, Sun X, Dai H (2008) PEGylated nanographene oxide for delivery of water-Insoluble cancer drugs. J Am Chem Soc 130:10876–10877

    Article  Google Scholar 

  • Liu CW, Xiong F, Jia HZ, Wang X, Cheng H, Sun Y, Zhang XZ, Zhuo RX, Feng J (2013) Graphene-based anticancer nanosystem and Its biosafety evaluation using a zebrafish model. Biomacromolecules 14:358–366

    Article  Google Scholar 

  • Lu C-H, Zhu C-L, Li J, Liu J–J, Chen X, Yang H–H (2010) Using graphene to protect DNA from cleavage during cellular delivery. Chem Commun 46:3116–3118

    Article  Google Scholar 

  • Lvov Y, Decher G, Sukhorukov G (1993) Assembly of thin films by means of successive deposition of alternate layers of DNA and poly(allylamine). Macromolecules 26:5396–5399

    Article  Google Scholar 

  • Lvov Y, Ariga K, Kunitake T (1994) Layer-by-layer assembly of alternate protein/polyion ultrathin films. Chem Lett 12:2323–2326

    Article  Google Scholar 

  • Matesanz MC, Vila M, Feito MJ, Linares J, Goncalves G, Vallet-Regi M, Marques PA, Portoles MT (2013) The effects of graphene oxide nanosheets localized on F-actin filaments on cell-cycle alterations. Biomaterials 34:1562–1569

    Article  Google Scholar 

  • Mizushima N (2004) Methods for monitoring autophagy. Cell Physiol Biochem 36:2491–2502

    Google Scholar 

  • Mizushima N, Levine B, Cuervo A, Klionsky D (2008) Autophagy fights disease through cellular self-digestion. Nature 451:1069–1075

    Article  Google Scholar 

  • Morales-Narváez E, Merkoçi A (2012) Graphene oxide as an optical biosensing platform. Adv Mater 24:3298–3308

    Article  Google Scholar 

  • Mu Q, Su G, Li L, Gilbertson BO, Yu LH, Zhang Q, Sun YP, Yan B (2012) Size-dependent cell uptake of protein-coated graphene oxide nanosheets. ACS Appl Mater Interfaces 4:2259–2266

    Article  Google Scholar 

  • Nel A, Xia T, Madler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311:622–627

    Article  Google Scholar 

  • Peng C, Hu W, Zhou Y, Fan C, Huang Q (2010) Intracellular imaging with a graphene-based fluorescent probe. Small 6:1686–1692

    Article  Google Scholar 

  • Podsiadlo P, Sinani VA, Bahng JH, Kam NW, Lee J, Kotov NA (2008) Gold nanoparticles enhance the anti-leukemia action of a 6-mercaptopurine chemotherapeutic agent. Langmuir 24:568–574

    Article  Google Scholar 

  • Ryoo S-R, Kim Y-K, Kim M-H, Min D-H (2010) Behaviors of NIH-3T3 fibroblasts on graphene/carbon nanotubes: proliferation, focal adhesion, and gene transfection studies. ACS Nano 4:6587–6598

    Article  Google Scholar 

  • Seldon MP, Silva G, Pejanovic N, Larsen R, Gregoire IP, Filipe J, Anrather J, Soares MP (2007) Heme oxygenase-1 inhibits the expression of adhesion molecules associated with endothelial cell activation via inhibition of NF-kappaB RelA phosphorylation at serine 276. J Immunol 179:7840–7851

    Article  Google Scholar 

  • Seleverstov O, Zabirnyk O, Zscharnack M, Bulavina L, Nowicki M, Heinrich JM, Yezhelyev M, Emmrich F, O’Regan R, Bader A (2006) Quantum dots for human mesenchymal stem cells labeling. A size-dependent autophagy activation. Nano Lett 6:2826–2832

    Article  Google Scholar 

  • Seleverstov O, Phang JM, Zabirnyk O (2009) Semiconductor nanocrystals in autophagy research: methodology improvement at nanosized scale. Meth Enzymol 452:277–296

    Article  Google Scholar 

  • Sharifi S, Behzadi S, Laurent S, Forrest ML, Stroeve P, Mahmoudi M (2012) Toxicity of nanomaterials. Chem Soc Rev 41:2323–2343

    Article  Google Scholar 

  • Singh SK, Singh MK, Nayak MK, Kumari S, Shrivastava S, Gracio JJ, Dash D (2011) Thrombus inducing property of atomically thin graphene oxide sheets. ACS Nano 5:4987–4996

    Article  Google Scholar 

  • Singh SK, Singh MK, Kulkarni PP, Sonkar VK, Gracio JJ, Dash D (2012) Amine-modified graphene: thrombo-protective safer alternative to graphene oxide for biomedical applications. ACS Nano 6:2731–2740

    Article  Google Scholar 

  • Sukhorukov GB, Möhwald H, Decher G, Lvov YM (1996) Assembly of polyelectrolyte multilayer films by consecutively alternating adsorption of polynucleotides and polycations. Thin Solid Films 284–285:220–223

    Article  Google Scholar 

  • Sun X, Liu Z, Welsher K, Robinson J, Goodwin A, Zaric S, Dai H (2008) Nano-graphene oxide for cellular imaging and drug delivery. Nano Res 1:203–212

    Article  Google Scholar 

  • Vila M, Portoles MT, Marques PA, Feito MJ, Matesanz MC, Ramirez-Santillan C, Goncalves G, Cruz SM, Nieto A, Vallet-Regi M (2012) Cell uptake survey of pegylated nanographene oxide. Nanotechnology 23:465103

    Article  Google Scholar 

  • Wang Y, Li ZH, Hu DH, Lin CT, Li JH, Lin YH (2010) Aptamer/graphene oxide nanocomplex for in situ molecular probing in living cells. J Am Chem Soc 132:9274–9276

    Article  Google Scholar 

  • Yamawaki H, Iwai N (2006) Cytotoxicity of water-soluble fullerene in vascular endothelial cells. Am J Physiol Cell Physiol 290:C1495–C1502

    Article  Google Scholar 

  • Yang K, Wan J, Zhang S, Zhang Y, Lee ST, Liu Z (2011) In vivo pharmacokinetics, long-term biodistribution, and toxicology of PEGylated graphene in mice. ACS Nano 5:516–522

    Article  Google Scholar 

  • Yang K, Wan J, Zhang S, Tian B, Zhang Y, Liu Z (2012) The influence of surface chemistry and size of nanoscale graphene oxide on photothermal therapy of cancer using ultra-low laser power. Biomaterials 33:2206–2214

    Article  Google Scholar 

  • Yang K, Feng L, Shi X, Liu Z (2013) Nano-graphene in biomedicine: theranostic applications. Chem Soc Rev 42:530–547

    Article  Google Scholar 

  • Zabirnyk O, Yezhelyev M, Seleverstov O (2007) Nanoparticles as a novel class of autophagy activators. Autophagy 3:278–281

    Google Scholar 

  • Zhang L, Yu J, Pan H, Hu P, Hao Y, Cai W, Zhu H, Yu AD, Xie X, Ma D, Yuan J (2007) Small molecule regulators of autophagy identified by an image-based high-throughput screen. P Natl Acad Sci USA 104:19023–19028

    Article  Google Scholar 

  • Zhang L, Xia J, Zhao Q, Liu L, Zhang Z (2010) Functional graphene oxide as a nanocarrier for controlled loading and targeted delivery of mixed anticancer drugs. Small 6:537–544

    Article  Google Scholar 

  • Zhang L, Lu Z, Zhao Q, Huang J, Shen H, Zhang Z (2011a) Enhanced -hemotherapy efficacy by sequential delivery of siRNA and anticancer drugs using PEI-grafted graphene oxide. Small 7:460–464

    Article  Google Scholar 

  • Zhang X, Yin J, Peng C, Hu W, Zhu Z, Li W, Fan C, Huang Q (2011b) Distribution and biocompatibility studies of graphene oxide in mice after intravenous administration. Carbon 49:986–995

    Article  Google Scholar 

  • Zhang W, Wang C, Li Z, Lu Z, Li Y, Yin JJ, Zhou YT, Gao X, Fang Y, Nie G (2012) Unraveling stress-induced toxicity properties of graphene oxide and the underlying mechanism. Adv Mater 24:5391–5397

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Basic Research Program of China (973 program: 2012CB934004 and 2011CB933400), National Natural Science Foundation of China (10979011; 30900278; 21173055; 21161120321). G.N. gratefully acknowledges the support of CAS, Hundred Talents Program.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guangjun Nie or Ying Fang.

Additional information

Yiye Li and Zhenzhen Lu have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Y., Lu, Z., Li, Z. et al. Cellular uptake and distribution of graphene oxide coated with layer-by-layer assembled polyelectrolytes. J Nanopart Res 16, 2384 (2014). https://doi.org/10.1007/s11051-014-2384-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-014-2384-4

Keywords

Navigation