Skip to main content
Log in

Time-dependent growth of crystalline Au0-nanoparticles in cyanobacteria as self-reproducing bioreactors: 1. Anabaena sp.

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Customized metal nanoparticles are highly relevant in industrial processes, where they are used as catalysts and therefore needed on a large scale. An extremely economically and environmentally friendly way to produce metal nanoparticles is microbial biosynthesis, meaning the biosorption and bioreduction of diluted metal ions to zero valent (metal) nanoparticles. To maintain the key advantage of biosynthesis, including eco friendliness, a bioreactor (e.g., bacteria) has to be harmless by itself. Here, the ability of the cyanobacteria Anabaena sp. (SAG 12.82) is shown to fulfill both needs: bioreduction of Au3+ ions to Au0 and the subsequent formation of crystalline Au0-nanoparticles as well as absence of the release of toxic substances (e.g., anatoxin-a). The time-dependent growth of the nanoparticles is recorded by X-ray powder diffraction (XRD) and transmission electron microscopy (TEM) over a range of several days. Formation of nanoparticles starts within the first minutes at the heterocyst polysaccharide layer (HEP). After 4 h, the dominating amount of nanoparticles is found in the vegetative cells. The bioproduced nanoparticles are found in both cell types, mainly located along the thylakoid membranes of the vegetative cells and have a final average size of 9 nm within the examined timescale of a few days.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ahmad A, Mukherjee P, Mandal D, Senapati S, Khan MI, Kumar R, Sastry M (2002) Enzyme mediated extracellular synthesis of CdS nanoparticles by the fungus, Fusarium oxysporum. J Am Chem Soc 124:12108–12109

    Article  Google Scholar 

  • Aiken JD, Finke RG (1999) A review of modern transition-metal nanoclusters: their synthesis, characterization, and applications in catalysis. J Mol Catal A 145:1–44

    Article  Google Scholar 

  • Bansal V, Ramanathan R, Bhargava SK (2011) Fungus-mediated biological approaches towards ‘green’ synthesis of oxide nanomaterials. Aust J Chem 64:279–293

    Article  Google Scholar 

  • Bansal V, Bharde A, Ramanathan R, Bhargava SK (2012) Inorganic materials using ‘unusual’ microorganisms. Adv Colloid Interface Sci 179–182:150–168

    Article  Google Scholar 

  • Baptista MS, Vasconcelos MT (2006) Cyanobacteria metal interactions: requirements, toxicity, and ecological implications. Crit Rev Microbiol 32:127–137

    Article  Google Scholar 

  • Brayner R, Barberousse H, Hernadi M, Djedjat C, Yéprémian C, Coradin T, Livage J, Fiévet F, Couté A (2007) Cyanobacteria as bioreactors for the synthesis of Au, Ag, Pd, and Pt nanoparticles via an enzyme-mediated route. J Nanosci Nanotechnol 7:2696–2708

    Article  Google Scholar 

  • Capek I (2004) Preparation of metal nanoparticles in water-in-oil (w/o) microemulsions. Adv Colloid Interface Sci 110:49–74

    Article  Google Scholar 

  • Dahoumane SA, Djediat C, Yéprémian C, Couté A, Fiévet F, Coradin T, Brayner R (2012a) Recycling and adaptation of Klebsormidium flaccidum microalgae for the sustained production of gold nanoparticles. Biotechnol Bioeng 109:284–288

    Article  Google Scholar 

  • Dahoumane SA, Djediat C, Yéprémian C, Couté A, Fiévet F, Coradin T, Brayner R (2012b) Species selection for the design of gold nanobioreactor by photosynthetic organisms. J Nanoparticle Res 14:883–889

    Article  Google Scholar 

  • De Corte S, Hennebel T, De Gusseme B, Verstraete W, Boon N (2012) Bio-palladium: from metal recovery to catalytic applications. Microb Biotechnol 5:5–17

    Article  Google Scholar 

  • Deplanche K, Merroun ML, Casadesus M, Tran DT, Mikheenko IP, Bennett JA, Zhu J, Jones IP, Attard GA, Wood J, Selenska-Pobell S, Macaskie LE (2012) Microbial synthesis of core/shell gold/palladium nanoparticles for applications in green chemistry. J R Soc Interface 9:1705–1712

    Article  Google Scholar 

  • Durán Pachón L, Rothenberg G (2008) Transition-metal nanoparticles: synthesis, stability and the leaching issue. Appl Organomet Chem 22:288–299

    Article  Google Scholar 

  • Eriksson S, Nylén U, Rojas S, Boutonnet M (2004) Preparation of catalysts from microemulsions and their applications in heterogeneous catalysis. Appl Catal A 265:207–219

    Article  Google Scholar 

  • Fawell JK, Mitchell RE, Hill RE, Everett DJ (1999) The toxicity of cyanobacterial toxins in the mouse: II anatoxin-a. Hum Exp Toxicol 18:168–173

    Article  Google Scholar 

  • Flores E, Herrero A (2011) Compartmentalized function through cell differentiation in filamentous cyanobacteria. Nat Rev Microbiol 8:39–50

    Article  Google Scholar 

  • Focsan M, Ardelean II, Craciun C, Astilean S (2011) Interplay between gold nanoparticle biosynthesis and metabolic activity of cyanobacterium Synechocystis sp. PCC 6803. Nanotechnology 22:485101

    Article  Google Scholar 

  • Gaikwad AN, Verschuren P, Eiser E, Rothenberg G (2006) A simple method for measuring the size of metal nanoclusters in solution. J Phys Chem B 110:17437–17443

    Article  Google Scholar 

  • Gaikwad AN, Verschuren P, Kinge S, Rothenberg G, Eiser E (2008) Matter of age: growing anisotropic gold nanocrystals in organic media. Phys Chem Chem Phys 10:951–956

    Article  Google Scholar 

  • Gericke M, Pinches A (2006) Biological synthesis of metal nanoparticles. Hydrometallurgy 83:132–140

    Article  Google Scholar 

  • Gonzalez CM, Liu Y, Scaiano JC (2009) Photochemical strategies for the facile synthesis of gold-silver alloy and core-shell bimetallic nanoparticles. J Phys Chem C 113:11861–11867

    Article  Google Scholar 

  • Hsu S-W, On K, Gao B, Tao AR (2011) Polyelectrolyte-templated synthesis of bimetallic nanoparticles. Langmuir 27:8494–8499

    Article  Google Scholar 

  • Iravani S (2011) Green synthesis of metal nanoparticles using plants. Green Chem 13:2638–2650

    Article  Google Scholar 

  • Karnani RL, Chowdhary A (2013) Biosynthesis of silver nanoparticle by eco-friendly method. Indian J Nano Sci 1:25–31

    Google Scholar 

  • Konishi Y, Tsukiyama T, Ohno K, Saitoh N, Nomura T, Nagamine S (2006) Intracellular recovery of gold by microbial reduction of AuCl4-ions using the anaerobic bacterium Shewanella algae. Hydrometallurgy 81:24–29

    Article  Google Scholar 

  • Korbekandi H, Iravani S, Abbasi S (2009) Production of nanoparticles using organisms. Crit Rev Biotechnol 29:279–306

    Article  Google Scholar 

  • Langford JI, Wilson AJC (1978) Scherrer after sixty years: a survey and some new results in the determination of crystallite size. J Appl Crystallogr 11:102–113

    Article  Google Scholar 

  • Le Bail A, Duroy H, Fourquet JL (1988) Ab-initio structure determination of LiSbWO6 by X-ray powder diffraction. Mater Res Bull 23:447–452

    Article  Google Scholar 

  • Lengke MF, Fleet ME, Southam G (2006a) Morphology of gold nanoparticles synthesized by filamentous cyanobacteria from gold(I)–thiosulfate and gold(III)–chloride complexes. Langmuir 22:2780–2787

    Article  Google Scholar 

  • Lengke MF, Ravel B, Fleet ME, Wanger G, Gordon RA, Southam G (2006b) Mechanisms of gold bioaccumulation by filamentous cyanobacteria from gold(III)-chloride complex. Environ Sci Technol 40:6304–6309

    Article  Google Scholar 

  • Lengke MF, Fleet ME, Southarn G (2007) Synthesis of palladium nanoparticles by reaction of filamentous cyanobacterial biomass with a palladium(II) chloride complex. Langmuir 23:8982–8987

    Article  Google Scholar 

  • Lloyd JR (2003) Microbial reduction of metals and radionuclides. FEMS Microbiol Rev 27:411–425

    Article  Google Scholar 

  • Luz A, Malek-Luz A, Feldmann C (2013) Photochemical synthesis of particulate main-group elements and compounds. Chem Mater 25:202–209

    Article  Google Scholar 

  • Mohanpuria P, Rana NK, Yadav SK (2008) Biosynthesis of nanoparticles: technological concepts and future applications. J Nanopart Res 10:507–517

    Article  Google Scholar 

  • Narayanan KB, Sakthivel N (2010) Biological synthesis of metal nanoparticles by microbes. Adv Colloid Interface Sci 156:1–13

    Article  Google Scholar 

  • Petricek V, Dusek M, Palatinus L (2006) Jana 2006. The crystallographic computing system. Institute of Physics, Praha

    Google Scholar 

  • Rai M, Duran N (2011) Metal nanoparticles in microbiology. Springer-Verlag, Berlin

    Book  Google Scholar 

  • Ramanathan R, O’Mullane AP, Parikh RY, Smooker PM, Bhargava SK, Bansal V (2011) Bacterial kinetics-controlled shape-directed biosynthesis of silver nanoplates using Morganella psychrotolerans. Langmuir 27:714–719

    Article  Google Scholar 

  • Singh M, Kalaivani R, Manikandan S, Sangeetha N, Kumaraguru AK (2013) Facile green synthesis of variable metallic gold nanoparticle using Padina gymnospora, a brown marine macroalga. Appl Nanosci 3:145–151

    Article  Google Scholar 

  • Sintubin L, Windt W, Dick J, Mast J, Ha D, Verstraete W, Boon N (2009) Lactic acid bacteria as reducing and capping agent for the fast and efficient production of silver nanoparticles. Appl Microbiol Biotechnol 84:741–749

    Article  Google Scholar 

  • Smith DK, Jenkins R (1996) International centre for diffraction data (ICDD): powder diffraction file PDF-2, release 2003 reference number 00-004-0784. J Res Natl Inst Stand Technol 101:259

    Article  Google Scholar 

  • Swanson HE, Tatge E (1953). Natl. Bur. Stand. (U.S.) Circular 539:33

  • Tao F, Zhang S, Nguyen L, Zhang X (2012) Action of bimetallic nanocatalysts under reaction conditions and during catalysis: evolution of chemistry from high vacuum conditions to reaction conditions. Chem Soc Rev 41:7980–7993

    Article  Google Scholar 

  • Tsygankov AA (2007) Nitrogen-fixing cyanobacteria: a review. Appl Biochem Microbiol 43:250–259

    Article  Google Scholar 

  • Wang J, Boelens HFM, Thathagar MB, Rothenberg G (2004) In situ spectroscopic analysis of nanocluster formation. ChemPhysChem 5:93–98

    Article  Google Scholar 

  • Warren SC, Jackson AC, Cater-Cyker ZD, DiSalvo FJ, Wiesner U (2007) Nanoparticle synthesis via the photochemical polythiol process. J Am Chem Soc 129:10072–10073

    Article  Google Scholar 

  • Wegner K, Pratsinis SE, Köhler M (2004) Nanomaterialien und Nanotechnologie. In Dittmeyer R, Keim W, Kreysa G, Oberholz A (eds) Winnacker-Kuchler: Chemische Technik: Prozesse und Produkte. Band 2: Neue Technologien, 5th edn. Wiley-VCH Verlag & Co. KGaA, Weinheim

  • Zadvorny O, Zorin N, Gogotov I (2006) Transformation of metals and metal ions by hydrogenases from phototrophic bacteria. Arch Microbiol 184:279–285

    Article  Google Scholar 

  • Zhang X, Yan S, Tyagi RD, Surampalli RY (2011) Synthesis of nanoparticles by microorganisms and their application in enhancing microbiological reaction rates. Chemosphere 82:489–494

    Article  Google Scholar 

Download references

Acknowledgments

We thank Werner Manz, Jutta Meier, Alexandra Grün (Microbiology, Campus Koblenz, University Koblenz-Landau), Manoj Schulz, Rita Beel, Michael P. Schlüsener, Thomas A. Ternes (Federal Institute of Hydrology, BfG, Koblenz) for analytical support (especially anatoxin-a measurements) and helpful discussions as well as Rita Grotjahn (Cell Biology/Electron Microscopy, University Bayreuth) for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Wehner.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Electronic supplementary material is available online from Springer. (DOC 3284 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rösken, L.M., Körsten, S., Fischer, C.B. et al. Time-dependent growth of crystalline Au0-nanoparticles in cyanobacteria as self-reproducing bioreactors: 1. Anabaena sp.. J Nanopart Res 16, 2370 (2014). https://doi.org/10.1007/s11051-014-2370-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-014-2370-x

Keywords

Navigation