Skip to main content
Log in

Ultrathin gold island films for time-dependent temperature sensing

  • Brief Communication
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

We report that an ultrathin gold island film deposited on non-wetted substrates, such as silica, is effective for time-dependent ex-situ temperature sensing with a fast time response from 5 to 180 s. The sensing mechanism is based on morphological self-organization of the ultrathin gold films upon thermal-induced dewetting. The shift of the characteristic surface plasmon absorption band can behave as effective “fingerprint” for temperature recording and allows a rapid readout. Time-dependent dewetting behaviors of the ultrathin films (1.0–5.0 nm) and their effects on surface plasmon resonance were investigated, opening up the possibility for developing nano film-based temperature sensors with controllable sensitivities and fast response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  • Alencar MARC, Maciel GS, de Araujo CB, Patra A (2004) Er3+-doped BaTiO3 nanocrystals for thermometry: influence of nanoenvironment on the sensitivity of a fluorescence based temperature sensor. Appl Phys Lett 84(23):4753–4755. doi:10.1063/1.1760882

    Article  Google Scholar 

  • Dai QQ, Zhang Y, Wang YN, Hu MZ, Zou B, Wang YD, Yu WW (2010) Size-dependent temperature effects on PbSe nanocrystals. Langmuir 26(13):11435–11440. doi:10.1021/La101545w

    Article  Google Scholar 

  • Dehoux T, Kelf TA, Tomoda M, Matsuda O, Wright OB, Ueno K, Nishijima Y, Juodkazis S, Misawa H, Tournat V, Gusev VE (2010) Vibrations of microspheres probed with ultrashort optical pulses (vol 34, pg 3740, 2009). Opt Lett 35(7):940

    Article  Google Scholar 

  • Doron-Mor I, Barkay Z, Filip-Granit N, Vaskevich A, Rubinstein I (2004) Ultrathin gold island films on silanized glass. Morphology and optical properties. Chem Mater 16(18):3476–3483

    Article  Google Scholar 

  • Englebienne P (1998) Use of colloidal gold surface plasmon resonance peak shift to infer affinity constants from the interactions between protein antigens and antibodies specific for single or multiple epitopes. Analyst 123(7):1599–1603

    Article  Google Scholar 

  • Gao YH, Bando Y (2002) Carbon nanothermometer containing gallium—gallium’s macroscopic properties are retained on a miniature scale in this nanodevice. Nature 415(6872):599–599

    Article  Google Scholar 

  • Gao YH, Bando Y, Liu ZW, Golberg D, Nakanishi H (2003) Temperature measurement using a gallium-filled carbon nanotube nanothermometer. Appl Phys Lett 83(14):2913–2915. doi:10.1063/1.1616201

    Article  Google Scholar 

  • Gluodenis M, Manley C, Foss CA (1999) In situ monitoring of the change in extinction of stabilized nanoscopic cold particles in contact with aqueous phenol solutions. Anal Chem 71(20):4554–4558

    Article  Google Scholar 

  • Gong NW, Lu MY, Wang CY, Chen Y, Chen LJ (2008) Au(Si)-filled beta-Ga2O3 nanotubes as wide range high temperature nanothermometers. Appl Phys Lett 92(7):073101–073103

    Article  Google Scholar 

  • Goyal A, Narayan J, Lin QH (2011) Self-assembly and directed assembly of advanced materials introduction. J Mater Res 26(2):109–110

    Article  Google Scholar 

  • Hutter E, Fendler JH (2004) Exploitation of localized surface plasmon resonance. Adv Mater 16(19):1685–1706. doi:10.1002/adma.200400271

    Article  Google Scholar 

  • Hutter E, Pileni MP (2003) Detection of DNA hybridization by gold nanoparticle enhanced transmission surface plasmon resonance spectroscopy. J Phys Chem B 107(27):6497–6499. doi:10.1021/Jp0342834

    Article  Google Scholar 

  • Jiran E, Thompson CV (1990) Capillary instabilities in thin-films. J Electron Mater 19(11):1153–1160

    Article  Google Scholar 

  • Jonsson MP, Jonsson P, Dahlin AB, Hook F (2007) Supported lipid bilayer formation and lipid-membrane-mediated biorecognition reactions studied with a new nanoplasmonic sensor template. Nano Lett 7(11):3462–3468. doi:10.1021/Nl072006t

    Article  Google Scholar 

  • Kalyuzhny G, Vaskevich A, Ashkenasy G, Shanzer A, Rubinstein I (2000) UV/Vis spectroscopy of metalloporphyrin and metallophthalocyanine monolayers self-assembled on ultrathin gold films. J Phys Chem B 104(34):8238–8244

    Article  Google Scholar 

  • Karakouz T, Holder D, Goomanovsky M, Vaskevich A, Rubinstein I (2009) Morphology and refractive index sensitivity of gold island films. Chem Mater 21(24):5875–5885. doi:10.1021/Cm902676d

    Article  Google Scholar 

  • Larsson EM, Alegret J, Kall M, Sutherland DS (2007) Sensing characteristics of NIR localized surface plasmon resonances in gold nanorings for application as ultrasensitive biosensors. Nano Lett 7(5):1256–1263. doi:10.1021/Nl0701612

    Article  Google Scholar 

  • Li YB, Bando Y, Golberg D, Liu ZW (2003) Ga-filled single-crystalline MgO nanotube: wide-temperature range nanothermometer. Appl Phys Lett 83(5):999–1001. doi:10.1063/1.1597422

    Article  Google Scholar 

  • Lupton JM (2002) A molecular thermometer based on long-lived emission from platinum octaethyl porphyrin. Appl Phys Lett 81(13):2478–2480. doi:10.1063/1.1509115

    Article  Google Scholar 

  • Malinsky MD, Kelly KL, Schatz GC, Van Duyne RP (2001) Chain length dependence and sensing capabilities of the localized surface plasmon resonance of silver nanoparticles chemically modified with alkanethiol self-assembled monolayers. J Am Chem Soc 123(7):1471–1482. doi:10.1021/Ja003312a

    Article  Google Scholar 

  • Marinakos SM, Chen SH, Chilkoti A (2007) Plasmonic detection of a model analyte in serum by a gold nanorod sensor. Anal Chem 79(14):5278–5283. doi:10.1021/Ac0706527

    Article  Google Scholar 

  • Mucic RC, Storhoff JJ, Mirkin CA, Letsinger RL (1998) DNA-directed synthesis of binary nanoparticle network materials. J Am Chem Soc 120(48):12674–12675

    Article  Google Scholar 

  • Mulvaney P (1996) Surface plasmon spectroscopy of nanosized metal particles. Langmuir 12(3):788–800

    Article  Google Scholar 

  • Nath N, Chilkoti A (2001) Interfacial phase transition of an environmentally responsive elastin biopolymer adsorbed on functionalized gold nanoparticles studied by colloidal surface plasmon resonance. J Am Chem Soc 123(34):8197–8202

    Article  Google Scholar 

  • Nath N, Chilkoti A (2002) A colorimetric gold nanoparticle sensor to interrogate biomolecular interactions in real time on a surface. Anal Chem 74(3):504–509. doi:10.1021/Ac015657x

    Article  Google Scholar 

  • Nath N, Chilkoti A (2004) Label-free biosensing by surface plasmon resonance of nanoparticles on glass: optimization of nanoparticle size. Anal Chem 76(18):5370–5378. doi:10.1021/Ac049741z

    Article  Google Scholar 

  • Nocera DG, Walker GW, Sundar VC, Rudzinski CM, Wun AW, Bawendi MG (2003) Quantum-dot optical temperature probes. Appl Phys Lett 83(17):3555–3557. doi:10.1063/1.1620686

    Article  Google Scholar 

  • Okamoto T, Yamaguchi I, Kobayashi T (2000) Local plasmon sensor with gold colloid monolayers deposited upon glass substrates. Opt Lett 25(6):372–374

    Article  Google Scholar 

  • Reynolds RA, Mirkin CA, Letsinger RL (2000) Homogeneous, nanoparticle-based quantitative colorimetric detection of oligonucleotides. J Am Chem Soc 122(15):3795–3796

    Article  Google Scholar 

  • Stewart ME, Anderton CR, Thompson LB, Maria J, Gray SK, Rogers JA, Nuzzo RG (2008) Nanostructured plasmonic sensors. Chem Rev 108(2):494–521. doi:10.1021/Cr068126n

    Article  Google Scholar 

  • Storhoff JJ, Lazarides AA, Mucic RC, Mirkin CA, Letsinger RL, Schatz GC (2000) What controls the optical properties of DNA-linked gold nanoparticle assemblies? J Am Chem Soc 122(19):4640–4650

    Article  Google Scholar 

  • Sun YG, Xia YN (2002) Increased sensitivity of surface plasmon resonance of gold nanoshells compared to that of gold solid colloids in response to environmental changes. Anal Chem 74(20):5297–5305. doi:10.1021/Ac0258352

    Article  Google Scholar 

  • Sun HT, Yu MP, Wang GK, Sun X, Lian J (2012) Temperature-dependent morphology evolution and surface plasmon absorption of ultrathin gold island films. J Phys Chem C 116(16):9000–9008. doi:10.1021/Jp300260h

    Article  Google Scholar 

  • Sun HT, Yu MP, Sun X, Wang GK, Lian J (2013) Effective temperature sensing by irreversible morphology evolution of ultrathin gold island films. J Phys Chem C 117(7):3366–3373. doi:10.1021/Jp310405b

    Article  Google Scholar 

  • Szunerits S, Praig VG, Manesse M, Boukherroub R (2008) Gold island films on indium tin oxide for localized surface plasmon sensing. Nanotechnology 19(19):195712–195718. doi:10.1088/0957-4484/19/19/195712

    Article  Google Scholar 

  • Tesler AB, Chuntonov L, Karakouz T, Bendikov TA, Haran G, Vaskevich A, Rubinstein I (2011) Tunable localized plasmon transducers prepared by thermal dewetting of percolated evaporated gold films. J Phys Chem C 115(50):24642–24652. doi:10.1021/Jp209114j

    Article  Google Scholar 

  • Underwood S, Mulvaney P (1994) Effect of the solution refractive-index on the color of gold colloids. Langmuir 10(10):3427–3430

    Article  Google Scholar 

  • Wang SP, Westcott S, Chen W (2002) Nanoparticle luminescence thermometry. J Phys Chem B 106(43):11203–11209. doi:10.1021/Jp026445m

    Article  Google Scholar 

  • Wang D, Ji R, Schaaf P (2011) Formation of precise 2D Au particle arrays via thermally induced dewetting on pre-patterned substrates. Beilstein J Nanotechnol 2:318–326

    Article  Google Scholar 

  • Zhang XM, Zhang JH, Wang HA, Hao YD, Zhang X, Wang TQ, Wang YN, Zhao R, Zhang H, Yang B (2010) Thermal-induced surface plasmon band shift of gold nanoparticle monolayer: morphology and refractive index sensitivity. Nanotechnology 21(46):465702–465712

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by DOD Defense Threat Reduction Agency under the Grant of HDTRA1-10-1-0002.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Lian.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 3161 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, H., Yu, M., Sun, X. et al. Ultrathin gold island films for time-dependent temperature sensing. J Nanopart Res 16, 2273 (2014). https://doi.org/10.1007/s11051-014-2273-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-014-2273-x

Keywords

Navigation