Skip to main content
Log in

Enhancement of bioavailability by formulating rhEPO ionic complex with lysine into PEG–PLA micelle

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

A composite micelle of ionic complex encapsulated into poly(ethylene glycol)-poly(d,l-lactide) (PEG–PLA) di-block copolymeric micelles was used for protein drug delivery to improve its pharmacokinetic performance. In this study, recombinant human erythropoietin (rhEPO, as a model protein) was formulated with lysine into composite micelles at a diameter of 71.5 nm with narrow polydispersity indices (PDIs < 0.3). Only a trace amount of protein was in aggregate form. The zeta potential of the spherical micelles was ranging from −0.54 to 1.39 mv, and encapsulation efficiency is high (80 %). The stability of rhEPO was improved significantly in composite micelles in vitro. Pharmacokinetic studies in rats showed significant, enhanced plasma retention of the composite micelles in comparison with native rhEPO. Areas under curve (AUCs) of the rhEPO released from the composite micelles were 4.5- and 2.3-folds higher than those of the native rhEPO and rhEPO-loaded PEG–PLA micelle, respectively. In addition, the composite micelles exhibited good biocompatibility using MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide) assay with human embryonic kidney (HEK293T) cells. All these features are preferable for utilizing the composite micelles as a novel protein delivery system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Bae ATYH (2007) Role of a novel excipient poly(ethylene glycol)-b-poly(l-histidine) in retention of physical stability of insulin in aqueous solutions. Pharm Res 24:1517–1526

    Article  Google Scholar 

  • Chao Fang BS, Pei Y-Y, Hong M-H, Jiang W, Chen H-Z (2006) In vivo tumor targeting of tumor necros is factor-α-loaded stealth nanoparticles: effect of MePEG molecular weight and particle size. Eur J Pharm Sci 27:27–36

    Article  Google Scholar 

  • Chiu GNC, Abraham SA, Ickenstein LM, Ng R, Karlsson G, Edwards K, Wasan EK, Bally MB (2005) Encapsulation of doxorubicin into thermosensitive liposomes via complexation with the transition metal manganese. J Control Release 104:271–288

    Article  CAS  Google Scholar 

  • Davis ME (2008) Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat Rev Drug Discov 7:771–782

    Article  CAS  Google Scholar 

  • Emile C, Bazile D, Herman F, Helene C, Veillard M (1996) Encapsulation of oligonucleotides in stealth Me. PEG–PLA50 nanoparticles by complexation with structured oligopeptides. Drug Delivery 3:187–195

    Article  CAS  Google Scholar 

  • Francis GE, Fisher D, Delgado C, Malik F, Gardiner A, Neale D (1998) PEGylation of cytokines and other therapeutic proteins and peptides: the importance of biological optimisation of coupling techniques. Int J Hematol 68:1–18

    Article  CAS  Google Scholar 

  • Geng Y, Yuan W, Wu F, Chen J, He M, Jin T (2008) Formulating erythropoietin-loaded sustained-release PLGA microspheres without protein aggregation. J Control Release 130:259–265

    Article  CAS  Google Scholar 

  • Govender T, Riley T, Ehtezazi T, Garnett MC, Stolnik S, Illum L, Davis SS (2000) Defining the drug incorporation properties of PLA–PEG nanoparticles. Int J Pharm 199:95–110

    Article  CAS  Google Scholar 

  • Graul A, Cruces E, Dulsat C, Arias E, Stringer M (2012) The year’s new drugs & biologics, 2011. Drugs Today (Barc) 48:33–77

    CAS  Google Scholar 

  • Gref R, Lück M, Quellec P, Marchand M, Dellacherie E, Harnisch S, Blunk T, Müller R (2000) ‘Stealth’corona-core nanoparticles surface modified by polyethylene glycol (PEG): influences of the corona (PEG chain length and surface density) and of the core composition on phagocytic uptake and plasma protein adsorption. Colloids Surf B 18:301–313

    Article  CAS  Google Scholar 

  • Hahn SK, Oh EJ, Miyamoto H, Shimobouji T (2006) Sustained release formulation of erythropoietin using hyaluronic acid hydrogels crosslinked by Michael addition. Int J Pharm 322:44–51

    Article  CAS  Google Scholar 

  • Han C, Davis CB, Wang B (2010) Evaluation of drug candidates for preclinical development: pharmacokinetics, metabolism, pharmaceutics, and toxicology. Wiley, Hoboken, p 12

    Google Scholar 

  • He J, Feng M, Zhou X, Ma S, Jiang Y, Wang Y, Zhang H (2011) Stabilization and encapsulation of recombinant human erythropoietin into PLGA microspheres using human serum albumin as a stabilizer. Int J Pharm 416:69–76

    Article  CAS  Google Scholar 

  • Hoffman AS, Stayton PS, Bulmus V, Chen G, Chen J, Cheung C, Chilkoti A, Ding Z, Dong L, Fong R (2000) Really smart bioconjugates of smart polymers and receptor proteins. J Biomed Mater Res 52:577–586

    Article  CAS  Google Scholar 

  • Jang WD, Nakagishi Y, Nishiyama N, Kawauchi S, Morimoto Y, Kikuchi M, Kataoka K (2006) Polyion complex micelles for photodynamic therapy: incorporation of dendritic photosensitizer excitable at long wavelength relevant to improved tissue-penetrating property. J Control Release 113:73–79

    Article  CAS  Google Scholar 

  • Kataoka K, Harada A, Nagasaki Y (2001) Block copolymer micelles for drug delivery: design, characterization and biological significance. Adv Drug Deliver Rev 47:113–131

    Article  CAS  Google Scholar 

  • Kuwabara T, Ishikawa Y, Kobayashi H, Kobayashi S, Sugiyama Y (1995) Renal clearance of a recombinant granulocyte colony-stimulating factor, nartograstim, in rats. Pharm Res 12:1466–1469

    Article  CAS  Google Scholar 

  • Kwak HH, Shim WS, Choi MK, Son MK, Kim YJ, Yang HC, Kim TH, Lee GI, Kim BM, Kang SH, Shim CK (2009) Development of a sustained-release recombinant human growth hormone formulation. J Control Release 137:160–165

    Article  CAS  Google Scholar 

  • Luo YL, Yuan JF, Shi JH, Gao QY (2010) Synthesis and characterization of polyion complex micelles and their controlled release of folic acid. J Colloid Interface Sci 350:140–147

    Article  CAS  Google Scholar 

  • Macdougall IC, Eckardt KU (2006) Novel strategies for stimulating erythropoiesis and potential new treatments for anaemia. Lancet 368:947–953

    Article  CAS  Google Scholar 

  • Marsh D, Bartucci R, Sportelli L (2003) Lipid membranes with grafted polymers: physico-chemical aspects. BBA-Biomembranes 1615:33–59

    Article  CAS  Google Scholar 

  • Morlock M, Koll H, Winter G, Kissel T (1997) Microencapsulation of rh-erythropoietin, using biodegradable poly(d, l-lactide-co-glycolide): protein stability and the effects of stabilizing excipients. Eur J Pharm Biopharm 43:29–36

    Article  CAS  Google Scholar 

  • Nguyen CA, Allémann E, Schwach G, Doelker E, Gurny R (2003) Cell interaction studies of PLA–MePEG nanoparticles. Int J Pharm 254:69–72

    Article  CAS  Google Scholar 

  • Owens DE, Peppas NA (2006) Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int J Pharm 307:93–102

    Article  CAS  Google Scholar 

  • Pistel K, Bittner B, Koll H, Winter G, Kissel T (1999) Biodegradable recombinant human erythropoietin loaded microspheres prepared from linear and star-branched block copolymers: influence of encapsulation technique and polymer composition on particle characteristics. J Control Release 59:309–325

    Article  CAS  Google Scholar 

  • Ryan SM, Mantovani G, Wang X, Haddleton DM, Brayden DJ (2008) Advances in PEGylation of important biotech molecules: delivery aspects. Expert Opin Drug Deliv 5:371–383

    Article  CAS  Google Scholar 

  • Salmaso S, Caliceti P (2011) A useful tool to improve the biological performance of biotech drugs. In: van der Walle C (ed) Peptide and protein delivery. Elsevier Health Sciences, London, pp 247–290

    Chapter  Google Scholar 

  • Salmaso S, Caliceti P (2013) Self assembling nanocomposites for protein delivery: supramolecular interactions of soluble polymers with protein drugs. Int J Pharm 440:111–123

    Article  CAS  Google Scholar 

  • Salmaso S, Bersani S, Semenzato A, Caliceti P (2006) Nanotechnologies in protein delivery. J Nanosci Nanotechnol 6:9–10

    Article  Google Scholar 

  • Sandanaraj BS, Vutukuri DR, Simard JM, Klaikherd A, Hong R, Rotello VM, Thayumanavan S (2005) Non-covalent modification of chymotrypsin surface using amphiphilic polymeric scaffold–implications in modulating protein function. J Am Chem Soc 127:10693–10698

    Article  CAS  Google Scholar 

  • Sato AK, Viswanathan M, Kent RB, Wood CR (2006) Therapeutic peptides: technological advances driving peptides into development. Curr Opin Biotechnol 17:638–642

    Article  CAS  Google Scholar 

  • Shi Y, Huang W, Liang R, Sun K, Zhang F, Liu W, Li Y (2013) Improvement of in vivo efficacy of recombinant human erythropoietin by encapsulation in PEG–PLA micelle. Int J Nanomedicine 8:1–11

    Article  CAS  Google Scholar 

  • Stolnik S, Garnett M, Davies M, Illum L, Bousta M, Vert M, Davis S (1995) The colloidal properties of surfactant-free biodegradable nanospheres from poly (β-malic acid-co-benzyl malate) s and poly (lactic acid-co-glycolide. Colloid Surf A 97:235–245

    Article  CAS  Google Scholar 

  • Tanaka H, Okada Y, Kawagishi M, Tokiwa T (1989) Pharmacokinetics and pharmaco-dynamics of recombinant human granulocyte-colony stimulating factor after intravenous and subcutaneous administration in the rat. J Pharmacol Exp Ther 272:1199–1203

    Google Scholar 

  • Tian H, Deng C, Lin H, Sun J, Deng M, Chen X, Jing X (2005) Biodegradable cationic PEG–PEI–PBLG hyperbranched block copolymer: synthesis and micelle characterization. Biomaterials 26:4209–4217

    Article  CAS  Google Scholar 

  • Torchilin VP (2001) Structure and design of polymeric surfactant-based drug delivery systems. J Control Release 73:137

    Article  CAS  Google Scholar 

  • Venkatesan N, Uchino K, Amagase K, Ito Y, Shibata N, Takada K (2006) Gastro-intestinal patch system for the delivery of erythropoietin. J Control Release 111:19–26

    Article  CAS  Google Scholar 

  • Veronese FM, Mero A (2008) The impact of PEGylation on biological therapies. BioDrugs 22:315–329

    Article  CAS  Google Scholar 

  • Wakebayashia D, Nishiyama N, Yamasakia Y, Itakaa K, Kanayamaa N, Harada A, Nagasakid Y, Kataoka K (2004) Lactose conjugated polyion complex micelles incorporating plasmid DNA as a targetable gene vector system: their preparation and gene transfecting efficiency against cultured HepG2 cells. J Control Release 95:653–664

    Article  Google Scholar 

  • Walgren JL, Thompson DC (2004) Application of proteomic technologies in the drug development process. Toxicol Lett 149:377–385

    Article  CAS  Google Scholar 

  • Wang CH, Wang CH, Hsiue GH (2005) Polymeric micelles with a pH-responsive structure as intracellular drug carriers. J Control Release 108:140–149

    Article  CAS  Google Scholar 

  • Wenquan L (2003) Biopharmaceutics and pharmacokinetics, 2nd edn. People’s Medical Publishing House, Beijing, p 113

    Google Scholar 

  • Yang KW, Li XR, Yang ZL, Li PZ, Wang F, Liu Y (2009) Novel polyion complex micelles for liver-targeted delivery of diammonium glycyrrhizinate: in vitro and in vivo characterization. J Biomed Mater Res A 88:140–148

    Google Scholar 

  • Zeng Q (2004) Organic chemistry, 4th edn. Higher Education Press, Beijing 11

    Google Scholar 

  • Zigang Y, Fen Z, Jianjun Y, Lixin M, Chao Z, Shiyuan C (2006) Preparation of PLL–PEG–PLL and its application to DNA encapsulation. Sci China Ser B 49:357–362

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Basic Research Program of China (No. 2012CB724003), the National Major Scientific and Technological Special Project for “Significant New Drugs Development” (No.2011ZX09501-001-04), and the National Key Technology Research and Development Program (No.2012BAK25B03).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kaoxiang Sun or Youxin Li.

Additional information

Yanan Shi and Fengying Sun contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shi, Y., Sun, F., Wang, D. et al. Enhancement of bioavailability by formulating rhEPO ionic complex with lysine into PEG–PLA micelle. J Nanopart Res 15, 2002 (2013). https://doi.org/10.1007/s11051-013-2002-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-013-2002-x

Keywords

Navigation