Skip to main content
Log in

Rheology and microstructure of dilute graphene oxide suspension

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Graphene and graphene oxide are potential candidates as nanofluids for thermal management applications. Here, we investigate the rheological properties and intrinsic viscosity of aqueous suspension of graphene and use the measured intrinsic viscosity to determine the aspect ratio of graphene oxide. Dilute suspension of graphene oxide (0.05 to 0.5 mg/mL) exhibits a shear thinning behavior at low shear rates followed by a shear-independent region that starts at shear rate between 5 and 100/s depending on the concentration. This shear thinning behavior becomes more pronounced with the increase of particle loading. Moreover, AFM imaging of the dried graphene oxide indicates the evolution of irregular and thin low fractal aggregates of 0.3–1.8 nm thickness at lower concentrations to oblate compact structures of 1–18 nm thickness of nanosheets at higher concentration. These observations elucidate the microstructure growth mechanisms of graphene oxide in multiphase systems, which are important for nanofluids applications and for dispersing graphene and graphene oxide in composite materials. The suspension has a very high intrinsic viscosity of 1661 due to the high graphene oxide aspect ratio. Based on this intrinsic viscosity, we predict graphene oxide aspect ratio of 2445. While the classical Einstein and Batchelor models underestimate the relative viscosity of graphene oxide suspension, Krieger–Dougherty prediction is in a good agreement with the experimental measurement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Anbia M, Hariri SA et al (2010) Adsorptive removal of anionic dyes by modified nanoporous silica SBA-3. Appl Surf Sci 256(10):3228–3233

    Article  CAS  Google Scholar 

  • Azizian S, Haerifar M et al (2009) Adsorption of methyl violet onto granular activated carbon: equilibrium, kinetics and modeling. Chem Eng J 146(1):36–41

    Article  CAS  Google Scholar 

  • Batchelor G (1977) The effect of Brownian motion on the bulk stress in a suspension of spherical particles. J Fluid Mech 83(01):97–117

    Article  Google Scholar 

  • Boluk Y, Lahiji R et al (2011) Suspension viscosities and shape parameter of cellulose nanocrystals (CNC). Colloids Surf A 377(1):297–303

    Article  CAS  Google Scholar 

  • Cai W, Moore AL et al (2010) Thermal transport in suspended and supported monolayer graphene grown by chemical vapor deposition. Nano Lett 10(5):1645–1651

    Article  CAS  Google Scholar 

  • Chen H, Ding Y et al (2007) Rheological behaviour of nanofluids. New J Phys 9(10):367

    Article  Google Scholar 

  • Chen S, Zhang J et al (2010) Equilibrium and kinetic studies of methyl orange and methyl violet adsorption on activated carbon derived from Phragmites australis. Desalination 252(1–3):149–156

    Article  CAS  Google Scholar 

  • Coleman JN, Khan U et al (2006) Small but strong: a review of the mechanical properties of carbon nanotube–polymer composites. Carbon 44(9):1624–1652

    Article  CAS  Google Scholar 

  • Deng F, Zheng Q-S et al (2007) Effects of anisotropy, aspect ratio, and nonstraightness of carbon nanotubes on thermal conductivity of carbon nanotube composites. Appl Phys Lett 90(2):021914-021914-021913

    Article  Google Scholar 

  • Einstein A (1906) A new determination of molecular dimensions. Ann Phys 19(2):289–306

    Article  CAS  Google Scholar 

  • Gong JL, Wang B et al (2009) Removal of cationic dyes from aqueous solution using magnetic multi-wall carbon nanotube nanocomposite as adsorbent. J Hazard Mater 164(2–3):1517–1522

    Article  CAS  Google Scholar 

  • Grande L, Chundi VT et al (2012) Graphene for energy harvesting/storage devices and printed electronics. Particuology 10(1):1–8

    Article  CAS  Google Scholar 

  • Gupta VK, Suhas (2009) Application of low-cost adsorbents for dye removal—a review. J Environ Manag 90(8):2313–2342. http://www.sciencedirect.com/science/article/pii/S0301479708003290#

  • Güven N (1992) Molecular aspects of clay-water interactions. Clay-water interface and its rheological implications 4:2–79

    Google Scholar 

  • Iwamoto S, Lee S-H, et al (2013) Relationship between aspect ratio and suspension viscosity of wood cellulose nanofibers. Polym J. doi:10.1038/pj.2013.64

  • Jiang B, Liu C et al (2007) The effect of non-symmetric distribution of fiber orientation and aspect ratio on elastic properties of composites. Compos B Eng 38(1):24–34

    Article  Google Scholar 

  • Karagöz S, Tay T et al (2008) Activated carbons from waste biomass by sulfuric acid activation and their use on methylene blue adsorption. Bioresour Technol 99(14):6214–6222

    Article  Google Scholar 

  • Kim H, Abdala AA et al (2010) Graphene/polymer nanocomposites. Macromolecules 43(16):6515–6530

    Article  CAS  Google Scholar 

  • Krieger IM, Dougherty TJ (1959) A mechanism for non-Newtonian flow in suspensions of rigid spheres. J Rheol 3:137

    Article  CAS  Google Scholar 

  • Kuhn W, Kuhn H (1945) Die Abhängigkeit der Viskosität vom Strömungsgefälle bei hochverdünnten Suspensionen und Lösungen. Helv Chim Acta 28(1):97–127

    Article  CAS  Google Scholar 

  • Lee C-L, Chen C-H et al (2013a) Graphene nanosheets as ink particles for inkjet printing on flexible board. Chem Eng J 230:296–302

    Article  CAS  Google Scholar 

  • Lee SW, Kim KM et al (2013b) Study on flow boiling critical heat flux enhancement of graphene oxide/water nanofluid. Int J Heat Mass Transf 65:348–356

    Article  CAS  Google Scholar 

  • Lerf A, He H et al (1998) Structure of graphite oxide revisited. J Phys Chem B 102(23):4477–4482

    Article  CAS  Google Scholar 

  • Liu P, Zhang L (2007) Adsorption of dyes from aqueous solutions or suspensions with clay nano-adsorbents. Sep Purif Technol 58(1):32–39

    Article  CAS  Google Scholar 

  • Liu Z, Zhou A et al (2009) Adsorption behavior of methyl orange onto modified ultrafine coal powder. Chin J Chem Eng 17(6):942–948

    Article  CAS  Google Scholar 

  • Ma W, Yang F et al (2013) Silicone based nanofluids containing functionalized graphene nanosheets. Colloids Surf A 431:120–126

    Article  CAS  Google Scholar 

  • Novoselov K, Geim A et al (2004) Electric field effect in atomically thin carbon films. Science 306(5696):666

    Article  CAS  Google Scholar 

  • Parra-Vasquez ANG, Stepanek I et al (2007) Simple length determination of single-walled carbon nanotubes by viscosity measurements in dilute suspensions. Macromolecules 40(11):4043–4047

    Article  CAS  Google Scholar 

  • Potts JR, Dreyer DR et al (2011) Graphene-based polymer nanocomposites. Polymer 52(1):5–25

    Article  CAS  Google Scholar 

  • Prud’homme RK, Aksay IA, et al (2008) Conductive ink containing thermally exfoliated graphite oxide and method of making a conductive circuit using the same, US patent App. 20,080/302,561

  • Rafatullah M, Sulaiman O et al (2010) Adsorption of methylene blue on low-cost adsorbents: a review. J Hazard Mater 177(1–3):70–80

    Article  CAS  Google Scholar 

  • Teng M-Y, Lin S-H (2006) Removal of methyl orange dye from water onto raw and acid activated montmorillonite in fixed beds. Desalination 201(1–3):71–81

    Article  CAS  Google Scholar 

  • Yao Y, Xu F et al (2010) Adsorption behavior of methylene blue on carbon nanotubes. Bioresour Technol 101(9):3040–3046

    Article  CAS  Google Scholar 

  • Yu W, Xie H et al (2011) Significant thermal conductivity enhancement for nanofluids containing graphene nanosheets. Phys Lett A 375(10):1323–1328

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge Dr. Tewfik Souier for his assistance with AFM imaging.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed A. Abdala.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tesfai, W., Singh, P., Shatilla, Y. et al. Rheology and microstructure of dilute graphene oxide suspension. J Nanopart Res 15, 1989 (2013). https://doi.org/10.1007/s11051-013-1989-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-013-1989-3

Keywords

Navigation