Skip to main content
Log in

Rapid thermal synthesis of GaN nanocrystals and nanodisks

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Gallium nitride materials are at the forefront of nanoelectronic research due to their importance for UV optoelectronics. In this contribution, we present a facile and well-controlled synthesis of GaN nanodisks by rapid thermal ammonolysis of complex gallium fluoride precursor. We observed the formation of GaN nanodisks in 150 s at 800 °C. The structural properties of GaN were investigated by X-ray diffraction, Raman spectroscopy, and micro-photoluminescence. The morphology of GaN was investigated by scanning electron microscopy and the magnetic properties by superconducting quantum interference device (SQUID) techniques. The morphology of nanodisks was strongly influenced by the temperature of synthesis. The structure characterization shows a high concentration of defects related mainly to the vacancies of N and Ga. The magnetic measurement by SQUID shows paramagnetic behavior induced by structure defects. These findings have a strong implication on the construction of modern optoelectronic nanodevices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Azuma Y, Shimada M, Okuyama K (2004) Synthesis of monodisperse ultrapure gallium nitride nanoparticles by MOCVD. Chem Vap Depos 10:11–13. doi:10.1002/cvde.200304158

    Article  CAS  Google Scholar 

  • Cao YG, Chen XL, Li JY, Lan YC, Liang JK (2000) Observation of a quantum-confinement effect with GaN nanoparticles synthesized through a new gas reaction route. Appl Phys A 71:229–231

    CAS  Google Scholar 

  • Cho YS, Hardtdegen H, Kaluza N, Thillosen N, Steins R, Sofer Z, Lüth H (2006) Effect of carrier gas on GaN epilayer characteristics. Phys Status Solid C 3:1408–1411. doi:10.1002/pssc.200565121

    Article  CAS  Google Scholar 

  • Davydov VYu, Kitaev YuE, Goncharuk IN, Smirnov AN, Graul J, Semchinova O, Uffmann D, Smirnov MB, Mirgorodsky AP, Evarestov RA (1998) Phonon dispersion and Raman scattering in hexagonal GaN and AlN. Phys Rev B 58:12899–12907. doi:10.1103/PhysRevB.58.12899

    Article  CAS  Google Scholar 

  • Hahn H, Juza R (1940) Untersuchungen über die nitride von cadmium, gallium, indium und germanium. Metallamide und metallnitride. VIII. Mitteilung. Z Anorg Allg Chem 244:111–124. doi:10.1002/zaac.19402440203

    Article  CAS  Google Scholar 

  • Harima H (2002) Properties of GaN and related compounds studied by means of Raman scattering. J Phys Condens Matter 14:R967–R993. doi:10.1088/0953-8984/14/38/201

    Article  CAS  Google Scholar 

  • Iskandar F, Ogi T, Okuyama K (2006) Simple synthesis of GaN nanoparticles from gallium nitrate and ammonia aqueous solution under a flow of ammonia gas. Mater Lett 60:73–76. doi:10.1016/j.matlet.2005.07.075

    Article  CAS  Google Scholar 

  • Janik JF, Drygaś M, Czosnek C, Kamińska M, Palczewska M, Paine RT (2004) Carbothermally-assisted aerosol synthesis of semiconducting materials in the system GaN/Mn. J Phys Chem Solids 65:639–645

    Article  CAS  Google Scholar 

  • Kanishka B, Kripasindhu S, Rao CNR (2006) Ferromagnetism in Mn-doped GaN nanocrystals prepared solvothermally at low temperatures. Appl Phys Lett 89:132503–132505. doi:10.1063/1.2357927

    Article  Google Scholar 

  • Perlin P, Carillon CJ, Itie JP, Miguel AS, Grzegory I, Polian A (1992) Raman scattering and X-ray-absorption spectroscopy in gallium nitride under high pressure. Phys Rev B 45:83–89. doi:10.1103/PhysRevB.45.83

    Article  CAS  Google Scholar 

  • Schwenzer B, Hu J, Seshadri R, Keller S, DenBaars SP, Mishra UK (2004) Gallium nitride powders from ammonolysis: influence of reaction parameters on structure and properties. Chem Mater 16:5088–5095. doi:10.1021/cm049094s

    Article  CAS  Google Scholar 

  • Schwenzer B, Meier C, Masala O, Seshadri R, DenBaars SP, Mishra UK (2005) Synthesis of luminescing (In, Ga)N nanoparticles from an inorganic ammonium fluoride precursor. J Mater Chem 15:1891–1895. doi:10.1039/b418203k

    Article  CAS  Google Scholar 

  • Sheetz RM, Richter E, Andriotis AN, Lisenkov S, Pendyala C, Sunkara MK, Menon M (2011) Visible-light absorption and large band-gap bowing of GaN1−xSbx from first principles. Phys Rev B 84:075304. doi:10.1103/PhysRevB.84.075304

    Article  Google Scholar 

  • Tarsa EJ, Heying B, Wu XH, Fini P, DenBaars SP, Speck JS (1997) Homoepitaxial growth of GaN under Ga-stable and N-stable conditions by plasma-assisted molecular beam epitaxy. J Appl Phys 82:5472. doi:10.1063/1.365575

    Article  CAS  Google Scholar 

  • Wang WY, Xu YP, Zhang DF, Chen XL (2001) Synthesis and dielectric properties of cubic GaN nanoparticles. Mater Res Bull 36:2155–2162. doi:10.1016/S0025-5408(01)00700-0

    Article  CAS  Google Scholar 

  • Yang Y, Leppert VJ, Risbud SH, Twamley B, Power PP, Lee HWH (1999) Blue luminescence from amorphous GaN nanoparticles synthesized in situ in a polymer. Appl Phys Lett 74:2262–2264. doi:10.1063/1.123819

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Ministry of Education of the Czech Republic (Research Projects No. MSM6046137302). Financial support was received from specific university research (MSMT No 21/2012). This work was supported by Internal grant agency (IGA) of ICT Prague, grant No A1_FCHT_2012_006.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zdeněk Sofer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sofer, Z., Sedmidubský, D., Huber, Š. et al. Rapid thermal synthesis of GaN nanocrystals and nanodisks. J Nanopart Res 15, 1411 (2013). https://doi.org/10.1007/s11051-012-1411-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-012-1411-6

Keywords

Navigation