Skip to main content
Log in

Au/SiO2/QD core/shell/shell nanostructures with plasmonic-enhanced photoluminescence

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

A sol–gel method has been developed to fabricate Au/SiO2/quantum dot (QD) core–shell–shell nanostructures with plasmonic-enhanced photoluminescence (PL). Au nanoparticle (NP) was homogeneously coated with a SiO2 shell with adjusted thickness through a Stöber synthesis. When the toluene solution of hydrophobic CdSe/ZnS QDs was mixed with partially hydrolyzed 3-aminopropyltrimethoxysilane (APS) sol, the ligands on the QDs were replaced by a thin functional SiO2 layer because the amino group in partially hydrolyzed APS has strong binding interaction with the QDs. Partially hydrolyzed APS plays an important role as a thin functional layer for the transfers of QDs to water phase and the subsequent connection to aqueous SiO2-coated Au NPs. Although Au NPs were demonstrated as efficient PL quenchers when the SiO2 shell on the Au NPs is thin (less than 5 nm), we found that precise control of the spacing between the Au NP core and the QD shell resulted in QDs with an enhancement of 30 % of PL efficiency. The Au/SiO2/QD core/shell/shell nanostructures also reveal strong surface plasmon scattering, which makes the Au/SiO/QD core–shell–shell nanostructures an excellent dual-modality imaging probe. This technology can serve as a general route for encapsulating a variety of discrete nanomaterials because monodispersed nanostructures often have a similar surface chemistry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Scheme 2
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Barnes WL (1998) Fluorescence near interfaces: the role of photonic mode density. J Mod Opt 45:661–699. doi:10.1080/09500349808230614

    Article  CAS  Google Scholar 

  • Bruchez MP, Moronne M, Gin P, Weiss S, Alivisatos AP (1998) Semiconductor nanocrystals as fluorescent biological labels. Science 281:2013–2016. doi:10.1126/science.281.5385.2013

    Article  CAS  Google Scholar 

  • Chan YH, Chen J, Wark SE, Skiles SL, Son DH, Batteas JD (2009) Using patterned arrays of metal nanoparticles to probe plasmon enhanced luminescence of CdSe quantum dots. ACS Nano 3:1735–1744. doi:10.1021/nn900317n

    Article  CAS  Google Scholar 

  • Gerion D, Pinaud F, Shara Williams SC, Parak WJ, Zanchet D, Weiss S, Paul Alivisatos A (2001) Synthesis and properties of biocompatible water-soluble silica-coated CdSe/ZnS semiconductor quantum dots. J Phys Chem B 105:8861–8871. doi:10.1021/jp0105488

    Article  CAS  Google Scholar 

  • Gersten J, Nitzan A (1981) Spectroscopic properties of molecules interacting with small dielectric particles. J Chem Phys 75:1139–1152. doi:10.1063/1.442161

    Article  CAS  Google Scholar 

  • Gisin N, Ribordy G, Tittel W, Zbinden H (2002) Quantum cryptography. Rev Mod Phys 74:145–195. doi:10.1103/RevModPhys.74.145

    Article  Google Scholar 

  • Grabolle M, Spieles M, Lesnyak V, Gaponik N, Eychmüller A, Resch–Genger U (2009) Determination of the fluorescence quantum yield of quantum dots: suitable procedures and achievable uncertainties. Anal Chem 81:6285–6294. doi:10.1021/ac900308v

    Article  CAS  Google Scholar 

  • Gryczynski I, Malicka J, Jiang W, Fischer H, Chan WCW, Gryczynski Z, Grudzinski W, Lakowicz JR (2005) Surface-plasmon-coupled emission of quantum dots. J Phys Chem B 109:1088–1093. doi:10.1021/jp046173i

    Article  CAS  Google Scholar 

  • Hillman EMC, Moore A (2007) All-optical anatomical co-registration for molecular imaging of small animals using dynamic contrast. Nat Photonics 1:526–530. doi:10.1038/nphoton.2007.146

    Article  CAS  Google Scholar 

  • Jones M, Nedeljkovic J, Ellingson RJ, Nozik AJ, Rumbles GJ (2003) Photoenhancement of luminescence in colloidal CdSe quantum dot solutions. Phys Chem B 107:11346–11352. doi:10.1021/jp035598m

    Article  CAS  Google Scholar 

  • Kulakovich O, Strekal N, Yaroshevich A, Maskevich S, Gaponenko S, Nabiev I, Woggon U, Artemyev M (2002) Enhanced luminescence of CdSe quantum dots on gold colloids. Nano Lett 2:1449–1452. doi:10.1021/nl025819k

    Article  CAS  Google Scholar 

  • Lackowicz JR (2001) Radiative decay engineering: biophysical and biomedical applications. Anal Biochem 298:1–24. doi:10.1006/abio.2001.5377

    Article  Google Scholar 

  • Lackowicz JR (2004) Radiative decay engineering 3. Surface plasmon-coupled directional emission. Anal Biochem 324:153–169. doi:10.1016/j.ab.2003.09.039

    Article  Google Scholar 

  • Liu N, Prall BS, Klimov VI (2006) Hybrid gold/silica/nanocrystal-quantum-dot superstructures: synthesis and analysis of semiconductor-metal interactions. J Am Chem Soc 128:15362–15363. doi:10.1021/ja0660296

    Article  CAS  Google Scholar 

  • Liz-Marzán LM, Giersig M, Mulvaney P (1996) Synthesis of nanosized gold-silica core–shell particles. Langmuir 12:4329–4335

    Article  Google Scholar 

  • Murase N (2010) Quantum dot–core silica glass–shell nanomaterials: synthesis, characterization, and potential biomedical applications, vol 6. In Kumar C (ed) Nanomaterials for the life sciences. Wiley, New York, p. 393. doi:10.1002/9783527610419.ntls0201

  • Murase N, Li C (2008) Consistent determination of photoluminescence quantum efficiency for phosphors in the form of solution, plate, thin film, and powder. J Lumin 128:1896–1903. doi:10.1016/j.jlumin.2008.05.016

    Article  CAS  Google Scholar 

  • Nann T, Mulvaney P (2004) Single quantum dots in spherical silica particles. Angew Chem Int Ed 43:5393–5396. doi:10.1002/anie.200460752

    Article  CAS  Google Scholar 

  • Noginov MA, Zhu G, Belgrave AM, Bakker R, Shalaev VM, Narimanov EE, Stout S, Herz E, Suteewong T, Wiesner U (2009) Atmospheric carbon dioxide through the eocene–oligocene climate transition. Nature 460:1110–1114. doi:10.1038/nature08447

    Article  CAS  Google Scholar 

  • Okamoto K, Vyawahare S, Scherer A (2006) Surface-plasmon enhanced bright emission from CdSe quantum-dot nanocrystals. J Opt Soc Am B 23:1674–1678. doi:0740-3224/06/081674-5/

    Article  CAS  Google Scholar 

  • Ozel T, Nizamoglu S, Sefunc MA, Samarskaya O, Ozel IO, Mutlugun E, Lesnyak V, Gaponik N, Eychmuller A, Gaponenko SV, Demir HV (2011) Anisotropic emission from multilayered plasmon resonator nanocomposites of isotropic semiconductor quantum dots. ACS Nano 5:1328–1334. doi:10.1021/nn1030324

    Article  CAS  Google Scholar 

  • Pompa PP, Martiradonna L, Torre AD, Sala FD, Manna L, Vittorio MD, Calabi F, Cingolani R, Rinaldi R (2006) Metal-enhanced fluorescence of colloidal nanocrystals with nanoscale control. Nat Nanotechnol 1:126–130. doi:10.1038/nnano.2006.93

    Article  CAS  Google Scholar 

  • Rogach AL, Nagesha D, Ostrander JW, Giersig M, Kotov NA (2000) “Raisin bun”-type composite spheres of silica and semiconductor nanocrystals. Chem Mater 12:2676–2685. doi:10.1021/cm000244i

    Article  CAS  Google Scholar 

  • Salgueiriño-Maceira V, Correa-Duarte MA, Spasova M, Liz-Marzán LM, Farle M (2006) Composite silica spheres with magnetic and luminescent functionalities. Adv Funct Mater 16:509–514. doi:10.1002/adfm.200500565

    Article  Google Scholar 

  • Selvan ST, Tan TT, Ying JY (2005) Robust, non-cytotoxic, silica-coated CdSe quantum dots with efficient photoluminescence. Adv Mater 17:1620–1625. doi:10.1002/adma.200401960

    Article  CAS  Google Scholar 

  • Song JH, Atay T, Shi S, Urabe H, Nurmikko AV (2005) Large enhancement of fluorescence efficiency from CdSe/ZnS quantum dots induced by resonant coupling to spatially controlled surface plasmons. Nano Lett 5:1557–1561. doi:10.1021/nl050813r

    Article  CAS  Google Scholar 

  • Wang EH, Smolyaninov II, Davis CC (2010) Surface plasmon polariton enhanced fluorescence from quantum dots on nanostructured metal surfaces. Nano Lett 10:813–820. doi:10.1021/nl9031692

    Article  Google Scholar 

  • Yang P, Murase N (2010) Size-tunable highly luminescent SiO2 particles impregnated with number-adjusted CdTe nanocrystals. ChemPhysChem 11:815–821. doi:10.1002/cphc.200900850

    Article  CAS  Google Scholar 

  • Yang P, Murase N, Suzuki M, Hosokawa C, Kawasaki K, Kato T, Taguchi T (2010) Bright, non-blinking, and less-cytotoxic SiO2 beads with multiple CdSe/ZnS nanocrystals. Chem Commun 46:4595–4597. doi:10.1039/C002243H

    Article  CAS  Google Scholar 

  • Yang P, Ando M, Murase N (2011) Various Au nanoparticle organizations fabricated through SiO2 monomer induced self-assembly. Langmuir 27:895–901. doi:10.1021/la103143j

    Article  CAS  Google Scholar 

  • Yi DK, Lee SS, Ying JY (2006) Synthesis and applications of magnetic nanocomposite catalysts. Chem Mater 18:2459–2461. doi:10.1021/cm052885p

    Article  CAS  Google Scholar 

  • Yuan CT, Yu P, Ko HC, Huang J, Tang J (2009) Antibunching single-photon emission and blinking suppression of CdSe/ZnS quantum dots. ACS Nano 3:3051–3056. doi:10.1021/nn900760u

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norio Murase.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 207 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, P., Kawasaki, K., Ando, M. et al. Au/SiO2/QD core/shell/shell nanostructures with plasmonic-enhanced photoluminescence. J Nanopart Res 14, 1025 (2012). https://doi.org/10.1007/s11051-012-1025-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-012-1025-z

Keywords

Navigation