Skip to main content
Log in

Apatite formation on active nanostructured coating based on functionalized gold nanoparticles

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

In this work, we developed a simple method of surface functionalization of polymer substrates to provide them with the ability to form biomimetic hydroxyapatite (HA) when incubated in synthetic body fluids (SBF). In a first step, gold nanoparticles (AuNPs) were used as surface nanostructuring units for a biocompatible polymer, poly(2-hydroxyethyl methacrylate), known to not promote biomineralization in SBF, and under physiological conditions. The treatment of AuNPs-modified substrate with mercaptosuccinic acid leads to brushes of carboxyl-ended chains self-assembled onto the gold-polymer hybrid nanosurface. The main aim of this work was to demonstrate that these multianionic nanosurfaces would induce HA formation when incubated in solutions mimicking physiologic conditions. The formation of apatite and its morphology and composition were successfully investigated by means of high resolution scanning and transmission electron microscopy with energy dispersive X-ray microanalysis, infrared spectroscopy, X-ray photoelectron spectroscopy, and X-ray diffraction. Emphasis was put on the nucleation of HA in areas with agglomerated carboxyl-ended functionalized nanoparticles. The results obtained in this study may unlock new applications for smart active coatings based on functionalized AuNPs, such as the induction of biomineralization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Armentano I, Dottori M, Fortunati E, Mattioli S, Kenny JM (2010) Biodegradable polymer matrix nanocomposites for tissue engineering: a review. Polym Degrad Stab 95(11):2126–2146. doi:10.1016/j.polymdegradstab.2010.06.007

    Article  CAS  Google Scholar 

  • Brown JL, Nair LS, Bender J, Allcock HR, Laurencin CT (2007) The formation of an apatite coating on carboxylated polyphosphazenes via a biomimetic process. Mater Lett 61(17):3692–3695

    Article  CAS  Google Scholar 

  • Chou Y-F, Huang W, Dunn JCY, Miller TA, Wu BM (2005) The effect of biomimetic apatite structure on osteoblast viability, proliferation, and gene expression. Biomaterials 26(3):285–295

    Article  CAS  Google Scholar 

  • Donners J, Nolte RJM, Sommerdijk N (2003) Dendrimer-based hydroxyapatite composites with remarkable materials properties. Adv Mater 15(4):313–316. doi:10.1002/adma.200390076

    Article  CAS  Google Scholar 

  • Dorozhkin SV (2010) Nanosized and nanocrystalline calcium orthophosphates. Acta Biomater 6(3):715–734

    Article  CAS  Google Scholar 

  • Elter P, Sickel F, Ewald A (2009) Nanoscaled periodic surface structures of medical stainless steel and their effect on osteoblast cells. Acta Biomater 5(5):1468–1473

    Article  CAS  Google Scholar 

  • Filmon R, Grizon F, Basle MF, Chappard D (2002) Effects of negatively charged groups (carboxymethyl) on the calcification of poly(2-hydroxyethyl methacrylate). Biomaterials 23(14):3053–3059. doi:10.1016/s0142-9612(02)00069-8

    Article  CAS  Google Scholar 

  • Frandsen CJ, Brammer KS, Noh K, Connelly LS, Oh S, Chen L-H, Jin S (2011) Zirconium oxide nanotube surface prompts increased osteoblast functionality and mineralization. Mater Sci Eng C 31(8):1716–1722

    Article  CAS  Google Scholar 

  • Gu YW, Tay BY, Lim CS, Yong MS (2005) Biomimetic deposition of apatite coating on surface-modified NiTi alloy. Biomaterials 26(34):6916–6923

    Article  CAS  Google Scholar 

  • Kawai T, Ohtsuki C, Kamitakahara M, Miyazaki T, Tanihara M, Sakaguchi Y, Konagaya S (2004) Coating of an apatite layer on polyamide films containing sulfonic groups by a biomimetic process. Biomaterials 25(19):4529–4534

    Article  CAS  Google Scholar 

  • Kawashita M, Nakao M, Minoda M, Kim HM, Beppu T, Miyamoto T, Kokubo T, Nakamura T (2003) Apatite-forming ability of carboxyl group-containing polymer gels in a simulated body fluid. Biomaterials 24(14):2477–2484

    Article  CAS  Google Scholar 

  • Kokubo T (1991) Bioactive glass ceramics: properties and applications. Biomaterials 12(2):155–163

    Article  CAS  Google Scholar 

  • Kokubo T, Takadama H (2006) How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 27(15):2907–2915. doi:10.1016/j.biomaterials.2006.01.017

    Article  CAS  Google Scholar 

  • Kunze J, Müller L, Macak JM, Greil P, Schmuki P, Müller FA (2008) Time-dependent growth of biomimetic apatite on anodic TiO2 nanotubes. Electrochim Acta 53(23):6995–7003

    Article  CAS  Google Scholar 

  • Landi E, Tampieri A, Celotti G, Langenati R, Sandri M, Sprio S (2005) Nucleation of biomimetic apatite in synthetic body fluids: dense and porous scaffold development. Biomaterials 26(16):2835–2845

    Article  CAS  Google Scholar 

  • Lungu A, Stancu IC, Rusen E, Marculescu B, Iovu H (2007) Studies concerning the chemical immobilization of dendrimers on macroporous polymer matrix. J Optoelectron Adv Mater 9(11):3454–3458

    CAS  Google Scholar 

  • Lungu A, Rusen E, Butac LM, Stancu IC (2009) Epoxy-mediated immobilization of PAMAM dendrimers on methacrylic hydrogels. Dig J Nanomater Biostruct 4(1):97–107

    Google Scholar 

  • Singh AK, Talat M, Singh DP, Srivastava ON (2010) Biosynthesis of gold and silver nanoparticles by natural precursor clove and their functionalization with amine group. J Nanopart Res 12(5):1667–1675. doi:10.1007/s11051-009-9835-3

    Article  CAS  Google Scholar 

  • Stancu IC (2010) SPR imaging label-free control of biomineral nucleation!? In: Somerset VS (ed) Intelligent and biosensors. InTech, Rijeka

    Google Scholar 

  • Stancu IC, Filmon R, Cincu C, Marculescu B, Zaharia C, Tourmen Y, Baslé MF, Chappard D (2004) Synthesis of methacryloyloxyethyl phosphate copolymers and in vitro calcification capacity. Biomaterials 25(2):205–213

    Article  CAS  Google Scholar 

  • Stancu IC, Fernandez-Gonzalez A, Butac LM, Salzer R (2007a) Surface plasmon resonance imaging sensors based on mucin–antimucin interaction. J Optoelectron Adv Mater 9(9):2696–2702

    CAS  Google Scholar 

  • Stancu IC, Fernández-González A, Salzer R (2007b) SPR imaging antimucin–mucin bioaffinity based biosensor as label-free tool for early cancer diagnosis. Design and detection principle. J Optoelectron Adv Mater 9(6):1883–1889

    CAS  Google Scholar 

  • Storhoff JJ, Elghanian R, Mucic RC, Mirkin CA, Letsinger RL (1998) One-pot colorimetric differentiation of polynucleotides with single base imperfections using gold nanoparticle probes. J Am Chem Soc 120(9):1959–1964. doi:10.1021/ja972332i

    Article  CAS  Google Scholar 

  • Subramanian V, Youtie J, Porter AL, Shapira P (2010) Is there a shift to “active nanostructures”? J Nanopart Res 12:1–10 (1, Special Issue: Special focus on “Safety of Nanoparticles”)

    Google Scholar 

  • Tanahashi M, Matsuda T (1997) Surface functional group dependence on apatite formation on self-assembled monolayers in a simulated body fluid. J Biomed Mater Res 34(3):305–315. doi:10.1002/(sici)1097-4636(19970305)34:3<305:aid-jbm5>3.0.co;2-o

    Article  CAS  Google Scholar 

  • Voisin M, Ball M, O’Connell C, Sherlock R (2010) Osteoblasts response to microstructured and nanostructured polyimide film, processed by the use of silica bead microlenses. Nanomedicine 6(1):35–43

    Article  CAS  Google Scholar 

  • Wang G, Meng F, Ding C, Chu PK, Liu X (2010) Microstructure, bioactivity and osteoblast behavior of monoclinic zirconia coating with nanostructured surface. Acta Biomater 6(3):990–1000

    Article  CAS  Google Scholar 

  • Wang G, Liu X, Zreiqat H, Ding C (2011) Enhanced effects of nano-scale topography on the bioactivity and osteoblast behaviors of micron rough ZrO2 coatings. Colloids Surf B 86(2):267–274

    Article  CAS  Google Scholar 

  • Weiner S (1986) Organization of extracellularly mineralized tissues—a comparative-study of biological crystal-growth. CRC Crit Rev Biochem 20(4):365–408. doi:10.3109/10409238609081998

    Article  CAS  Google Scholar 

  • You C, Miyazaki T, Ishida E, Ashizuka M, Ohtsuki C, Tanihara M (2007) Fabrication of poly(vinyl alcohol)–apatite hybrids through biomimetic process. J Eur Ceram Soc 27(2–3):1585–1588

    Article  CAS  Google Scholar 

Download references

Acknowledgments

One author acknowledges the financial support from the European Social Fund through the project POSDRU/89/1.5/S/54785.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Izabela-Cristina Stancu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vasile, E., Serafim, A., Dragusin, DM. et al. Apatite formation on active nanostructured coating based on functionalized gold nanoparticles. J Nanopart Res 14, 918 (2012). https://doi.org/10.1007/s11051-012-0918-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-012-0918-1

Keywords

Navigation