Skip to main content
Log in

Preferential growth of Bi2Te3 films with a nanolayer structure: enhancement of thermoelectric properties induced by nanocrystal boundaries

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Preferential growth of different crystal planes in layered Bi2Te3 thin films with each layer <40 nm has been achieved by a simple magnetron co-sputtering method. The preferential growth of (015) plane or (001) was achieved at special depositing conditions due to the more sufficient growth along the in-plane direction induced by the enhanced diffusion of atoms and lower deposition rate. The Bi2Te3 film with preferential growth of (001) plane possesses about two times higher electrical conductivity and Seebeck coefficient as compared to the film with preferential growth of (015) plane, due to the greatly enhanced carrier mobility. Furthermore, the thermal conductivity has been suppressed due to more phonon scattering at grain boundaries, compared with ordinary Bi2Te3 alloys and films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Arachchige IU, Wu JS, Dravid VP, Kanatzidis MG (2008) Nanocrystals of the quaternary thermoelectric materials: AgPbmSbTem+2 (m = 1-18): phase-segregated or solid solutions? Adv Mater 20:3638–3642

    Article  CAS  Google Scholar 

  • Bassi AL, Bailini A, Casari CS, Donati F, Mantegazza A, Passoni M, Russo V, Bottani CE (2009) Thermoelectric properties of Bi–Te films with controlled structure and morphology. J Appl Phys 105:124307

    Article  Google Scholar 

  • Bies WE, Radtke RJ, Ehrenreich H, Runge E (2002) Thermoelectric properties of anisotropic semiconductors. Phys Rev B 65:085208

    Article  Google Scholar 

  • Boulouz A, Chakraborty S, Giani A, Pascal Delannoy F, Boyer A, Schumann J (2001) Transport properties of V-VI semiconducting thermoelectric BiSbTe alloy thin films and their application to micromodule Peltier devices. J Appl Phys 89:5009–5014

    Article  CAS  Google Scholar 

  • Carle M, Pierrat P, Lahalle-Gravier C, Scherrer S, Scherrer H (1995) Transport properties of n-type Bi2(Te1-xSex)3 single crystal solid solutions. J Phys Chem Solids 56:201–209

    Article  CAS  Google Scholar 

  • Cho S, Kim Y, Ketterson JB (2004) Structural and thermoelectric properties in (Sb1-xBix)2Te3 thin films. Appl Phys A 79:1729–1731

    Article  CAS  Google Scholar 

  • Chowdhury I, Prasher R, Lofgreen K, Chrysler G, Narasimhan S, Mahajan R, Koester D, Alley R, Venkatasubramanian R (2009) On-chip cooling by superlattice-based thin-film thermoelectric. Nat Nanotechnol 4:235–238

    Article  CAS  Google Scholar 

  • Cutler M, Mott NF (1969) Observation of Anderson localization in an electron gas. Phys Rev 181:1336–1340

    Article  CAS  Google Scholar 

  • Delves RT, Bowley AE, Hazelden DW, Goldsmid HJ (1961) Anisotropy of the electrical conductivity in bismuth telluride. Proc Phys Soc 78:838–844

    Article  CAS  Google Scholar 

  • Faleev SV, Léonard F (2008) Theory of enhancement of thermoelectric properties of materials with nanoinclusions. Phys Rev B 77:214304

    Article  Google Scholar 

  • Ham J, Shim W, Kim DH, Lee S, Roh J, Sohn SW, Oh KH, Voorhees PW, Lee W (2009) Direct growth of compound semiconductor nanowires by on-film formation of nanowires: bismuth telluride. Nano Lett 9:2867–2872

    Article  CAS  Google Scholar 

  • Huang H, Luan WL, Tu ST (2009) Influence of annealing on thermoelectric properties of bismuth telluride films grown via radio frequency magnetron sputtering. Thin Solid Films 517:3731–3734

    Article  CAS  Google Scholar 

  • Jeon SJ, Oh M, Jeon H, Hyun S, Lee HJ (2011) Effects of post-annealing on thermoelectric properties of bismuth-tellurium thin films deposited by co-sputtering. Microelectron Eng 88:541

    Article  CAS  Google Scholar 

  • Kashiwagi M, Hirata S, Harada K, Zheng Y, Miyazaki K, Yahiro M, Adachi C (2011) Enhanced figure of merit of a porous thin film of bismuth antimony telluride. Appl Phys Lett 98:023114

    Article  Google Scholar 

  • Kim DH, Lee GH (2006) Effect of rapid thermal annealing on thermoelectric properties of bismuth telluride films grown by co-sputtering. Mater Sci Eng, B 131:106–111

    Article  CAS  Google Scholar 

  • Kim DH, Byon E, Lee GH, Cho S (2006) Effect of deposition temperature on the structural and thermoelectric properties of bismuth telluride thin films grown by co-sputtering. Thin Solid Films 510:148–153

    Article  CAS  Google Scholar 

  • Lan YC, Minnich AJ, Chen G, Ren ZF (2010) Enhancement of thermoelectric figure-of-merit by a bulk nanostructuring approach. Adv Funct Mater 20:357–376

    Article  CAS  Google Scholar 

  • Lee HJ, Hyun S, Park HS, Han SW (2011) Thermoelectric properties of n-type Bi–Te thin films with various compositions. Microelectron Eng 88:593–596

    Article  CAS  Google Scholar 

  • Li L, Yang YW, Huang XH, Li GH, Ang R, Zhang LD (2006) Fabrication and electronic transport properties of Bi nanotube arrays. Appl Phys Lett 88:103119

    Article  Google Scholar 

  • Makala RS, Jagannadham K, Sales BC (2003) Pulsed laser deposition of Bi2Te3-based thermoelectric thin films. J Appl Phys 94:3907–3918

    Article  CAS  Google Scholar 

  • Mehta RJ, Karthik C, Singh B, Teki R, Borca-Tasciuc T, Ramanath G (2010) Seebeck tuning in chalcogenide nanoplate assemblies by nanoscale heterostructuring. ACS Nano 4:5055–5060

    Article  CAS  Google Scholar 

  • Motohashi T, Nonaka Y, Sakai K, Karppinen M, Yamauchi H (2008) Fabrication and thermoelectric characteristics of [(Bi, Pb)2Ba2O4±w]0.5CoO2 bulks with highly aligned grain structure. J Appl Phys 103:033705

    Article  Google Scholar 

  • Ohta H, Kim S, Mune Y, Mizoguchi T, Nomura K, Ohta S, Nomura T, Nakanishi Y, Ikuhara Y, Hirano M, Hosono H, Koumoto K (2007) Giant thermoelectric Seebeck coefficient of a two-dimensional electron gas in SrTiO3. Nat Mater 6:129–134

    Article  CAS  Google Scholar 

  • Peranio N, Eibl O, Nurnus J (2006) Structural and thermoelectric properties of epitaxially grown Bi2Te3 thin films and superlattices. J Appl Phys 100:114306

    Article  Google Scholar 

  • Pinisetty D, Gupta M, Karki AB, Young DP, Devireddy RV (2011) Fabrication and characterization of electrodeposited antimony telluride crystalline nanowires and nanotubes. J Mater Chem 21:4098–4107

    Article  CAS  Google Scholar 

  • Popescu A, Woods LM, Martin J, Nolas GS (2009) Model of transport properties of thermoelectric nanocomposite materials. Phys Rev B 79:205302

    Article  Google Scholar 

  • Poudel B, Hao Q, Ma Y, Lan YC, Minnich A, Yu B, Yan X, Wang DZ, Muto A, Vashaee D, Chen XY, Liu JM, Dresselhaus MS, Chen G, Ren ZF (2008) High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science 320:634–638

    Article  CAS  Google Scholar 

  • Purkayastha A, Yan QY, Raghuveer MS, Gandhi DD, Li HF, Liu ZW, Ramanujan RV, Borca-Tasciuc T, Ramanath G (2008) Surfactant-directed synthesis of branched bismuth telluride/sulfide core/shell nanorods. Adv Mater 20:2679–2683

    Article  CAS  Google Scholar 

  • Scheele M, Oeschler N, Meier K, Kornowski A, Klinke C, Weller H (2009) Synthesis and thermoelectric characterization of Bi2Te3 nanoparticles. Adv Funct Mater 19:3476–3483

    Article  CAS  Google Scholar 

  • Shi WD, Zhou L, Song SY, Yang JH, Zhang HJ (2008) Hydrothermal synthesis and thermoelectric transport properties of impurity-free antimony telluride hexagonal nanoplates. Adv Mater 20:1892–1897

    Article  CAS  Google Scholar 

  • Sootsman JR, Chung DY, Kanatzidis MG (2009) New and old concepts in thermoelectric materials. Angew Chem Int Ed 48:8616–8639

    Article  CAS  Google Scholar 

  • Takashiri M, Miyazaki K, Tanaka S, Kurosaki J, Nagai D, Tsukamoto H (2008) Effect of grain size on thermoelectric properties of n-type nanocrystalline bismuth-telluride based thin films. J Appl Phys 104:084302

    Article  Google Scholar 

  • Tritt TM, Böttnera H, Chen LD (2008) Thermoelectrics: direct solar thermal energy conversion. MRS Bull 33:366–368

    Article  CAS  Google Scholar 

  • Venkatasubramanian R, Siivola E, Colpitts T, O’Quinn B (2001) Thin-film thermoelectric devices with high room-temperature figures of merit. Nature 413:597–602

    Article  CAS  Google Scholar 

  • Vineis CJ, Shakouri A, Majumdar A, Kanatzidis MG (2010) Nanostructured thermoelectrics: big efficiency gains from small features. Adv Mater 22:3970–3980

    Article  CAS  Google Scholar 

  • Walachová J, Zeipl R, Zelinka J, Malina V, Pavelka M, Jelínek M, Studnička V, Lošt’ák P (2005) High room-temperature figure of merit of thin layers prepared by laser ablation from Bi2Te3 target. Appl Phys Lett 87:081902

    Article  Google Scholar 

  • Xiao F, Yoo BY, Lee KH, Myung NV (2007) Synthesis of Bi2Te3 nanotubes by galvanic displacement. J Am Chem Soc 129:10068–10069

    Article  CAS  Google Scholar 

  • Yan X, Poudel B, Ma Y, Liu WS, Joshi G, Wang H, Lan YC, Wang DZ, Chen G, Ren ZF (2010) Experimental studies on anisotropic thermoelectric properties and structures of n-type Bi2Te2.7Se0.3. Nano Lett 10:3373–3378

    Article  CAS  Google Scholar 

  • Yu FR, Zhang JJ, Yu DL, He JL, Liu ZY, Xu B, Tian YJ (2009) Enhanced thermoelectric figure of merit in nanocrystalline Bi2Te3 bulk. J Appl Phys 105:094303

    Article  Google Scholar 

  • Yu C, Ryu Y, Yin L, Yang H (2011) Modulating electronic transport properties of carbon nanotubes to improve the thermoelectric power factor via nanoparticle decoration. ACS Nano 5:1297–1303

    Article  CAS  Google Scholar 

  • Zhang GQ, Yu QX, Wang W, Li XG (2010) Nanostructures for thermoelectric applications: synthesis, growth mechanism, and property studies. Adv Mater 22:1959–1962

    Article  CAS  Google Scholar 

  • Zhao LD, Zhang BP, Li JF, Zhang HL, Liu WS (2008) Enhanced thermoelectric and mechanical properties in textured n-type Bi2Te3 prepared by spark plasma sintering. Solid State Sci 10:651–658

    Article  CAS  Google Scholar 

  • Zhao LD, Zhang BP, Liu WS, Li JF (2009) Effect of mixed grain sizes on thermoelectric performance of Bi2Te3 compound. J Appl Phys 105:023704

    Article  Google Scholar 

  • Zhou WW, Zhu JX, Li D, Hng HH, Boey FYC, Ma J, Zhang H, Yan QY (2009) Binary-phased nanoparticles for enhanced thermoelectric properties. Adv Mater 21:3196–3200

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by National Natural Science Foundation of China under Grant No. 51172008, the National High Technology Research and Development Program of China under Grant No. 2009AA03Z322.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuan Deng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deng, Y., Zhang, Z., Wang, Y. et al. Preferential growth of Bi2Te3 films with a nanolayer structure: enhancement of thermoelectric properties induced by nanocrystal boundaries. J Nanopart Res 14, 775 (2012). https://doi.org/10.1007/s11051-012-0775-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-012-0775-y

Keywords

Navigation