Skip to main content
Log in

56Co-labelled radioactive Fe3O4 nanoparticles for in vitro uptake studies on Balb/3T3 and Caco-2 cell lines

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Magnetite nanoparticles (Fe3O4 NPs) are manufactured nanomaterials increasingly used in healthcare for different medical applications ranging from diagnosis to therapy. This study deals with the irradiation of Fe3O4 NPs with a proton beam in order to produce 56Co as radiolabel and also with the possible use of nuclear techniques for the quantification of Fe3O4 NPs in biological systems. Particular attention has been focused on the size distribution (in the range of 100 nm) and the surface charge of the NPs characterizing them before and after the irradiation process in order to verify if these essential properties would be preserved during irradiation. Moreover, X-ray diffraction studies have been performed on radioactive and non-radioactive NPs, to assess if major changes in NPs structure might occur due to thermal and/or radiation effects. The radiation emitted from the radiolabels has been used to quantify the cellular uptake of the NPs in in vitro studies. As for the biological applications two cell lines have been selected: immortalized mouse fibroblast cell line (Balb/3T3) and human epithelial colorectal adenocarcinoma cell line (Caco-2). The cell uptake has been quantified by radioactivity measurements of the 56Co radioisotope performed with high resolution γ-ray spectrometry equipment. This study has showed that, under well-established irradiation conditions, Fe3O4 NPs do not undergo significant structural modifications and thus the obtained results are in line with the uptake studies carried out with the same non-radioactive nanomaterials (NMs). Therefore, the radiolabelling method can be fruitfully applied to uptake studies because of the low-level exposure where higher sensitivity is required.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abbas K, Buono S, Burgio N, Cotogno G, Gibson N, Maciocco L, Mercurio G, Santagata A, Simonelli F, Tagziria H (2009) Development of an accelerator driven neutron activator for medical radioisotope production. NIM A 601:223–228. doi:10.1016/j.nima.2008.11.152

    Article  CAS  Google Scholar 

  • Abbas K, Cydzik I, Del Torchio R, Farina M, Forti E, Gibson N, Holzwarth U, Simonelli F, Kreyling W (2010) Radiolabelling of TiO2 nanoparticles for radiotracer studies. J Nanopart Res 12(7):2435–2443

    Article  CAS  Google Scholar 

  • Berry CC, Wells S, Charles S, Aitchison G, Curtis ASG (2004) Cell response to dextran-derivatised iron oxide nanoparticles post internalisation. Biomaterials 25(23):5405–5413. doi:10.1016/j.biomaterials.2003.12.046

    Article  CAS  Google Scholar 

  • Cai H, Li Z, Huang CW, Park R, Shahinian AH, Conti PS (2010) An improved synthesis and biological evaluation of a new cage-like bifunctional chelator, 4-((8-amino-3, 6, 10, 13, 16, 19-hexaazabicyclo[6.6.6]icosane-1-ylamino)methyl)benzoic acid, for 64Cu radiopharmaceuticals. Nucl Med Biol 37:57–65

    Article  CAS  Google Scholar 

  • Cedervall T, Lynch I, Foy M, Berggård T, Donnelly S, Cagney G, Linse S, Dawson K (2007) Detailed identification of plasma proteins adsorbed on copolymer nanoparticles. Angew Chem Int Ed 46:5754–5756. doi:10.1002/anie.200700465

    Article  CAS  Google Scholar 

  • Chan DCF, Kirpotin D, Bunn PA (1993) Synthesis and evaluation of colloidal magnetic iron-oxides for the site specific radiofrequency-induced hyperthermia of cancer. J Magn Mater 122:374–378. doi:10.1016/0304-8853(93)91113-L

    Article  CAS  Google Scholar 

  • Colvin VL (2003) The potential environmental impact of engineered nanomaterials. Nat Biotechnol 21:1166–1170

    Article  CAS  Google Scholar 

  • EXFOR (Experimental Nuclear Reaction Data) from IAEA Nuclear Data Section, Vienna (2008). http://www-nds.iaea.org/exfor/exfor.htm (continuously updated). Accessed April 2011

  • Firestone RB, Chu SYF, Baglin CM (1998) Update to the 8th edition of the Table of Isotopes. Wiley, New York

    Google Scholar 

  • Ghanem GE, Joubran C, Arnould R, Lejeune F, Fruhling J (1993) Labelled polycyanoacrylate nanoparticles for human in vivo use. Appl Radiat Isot 44(9):1219–1224

    Article  CAS  Google Scholar 

  • Gillis P, Koenig H (1987) Transverse relaxation of solvent protons induced by magnetized spheres: application to ferritin, erythrocytes, and magnetite. Magn Reson Med 5:323–345

    Article  CAS  Google Scholar 

  • Gould P (2006) Nanomagnetism shows in vivo potential. Nanotoday 1(4):434–439

    Google Scholar 

  • Gupta AK, Gupta M (2005a) Cytotoxicity suppression and cellular uptake enhancement of surface modified magnetic nanoparticles. Biomaterials 26(13):1565–1573. doi:10.1016/j.biomaterials.2004.05.022

    Article  CAS  Google Scholar 

  • Gupta AK, Gupta M (2005b) Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26:3995–4021

    Article  CAS  Google Scholar 

  • Gupta PK, Hung CT (1989) Magnetically controlled targeted micro-carrier systems. Life Sci 44:175–186

    Article  CAS  Google Scholar 

  • Herrera AP, Rodríguez HL, Torres-Lugo M, Rinaldi C (2006) Functionalization of magnetite (Fe3O4) nanoparticles for cancer treatment. NSTI Nanotech, Boston

  • Liong M, Lu J, Kovochich M, Xia T, Ruehm S, Nel A, Tamanoi F, Zink J (2008) Multifunctional inorganic nanoparticles for imaging, targeting, and drug delivery. ACS Nano 2(5):889–896. doi:10.1021/nn800072t

    Article  CAS  Google Scholar 

  • Lubbe AS, Bergemann C, Huhnt W, Fricke T, Riess H, Brock JW, Huhn D (1996) Preclinical experiences with magnetic drug targeting: tolerance and efficacy. Cancer Res 56:4694–4701

    CAS  Google Scholar 

  • Magin RL, Wright SM, Niesman MR, Chan HC, Swartz HM (1986) Liposome delivery of NMR contrast agents for improved tissue imaging. Magn Reson Med 3:440–447

    Article  CAS  Google Scholar 

  • McCarthy JR, Weissleder R (2008) Multifunctional magnetic nanoparticles for targeted imaging and therapy. Adv Drug Deliv Rev 60(11):1241–1251

    Article  CAS  Google Scholar 

  • Nagatani N, Shinkai M, Honda II, Kobayashi T (2000) Development of a new transformation method using magnetite cationic liposomes and magnetic selection of transformed cells. Biotechnol Lett 22:999–1002

    Article  CAS  Google Scholar 

  • Nuclides 2000: an electronic chart of the nuclides, software version 1.00. European Commission, Institute of Transuranium Elements, Karlsruhe

  • Osaka T, Nakanishib T, Shanmugama S, Takahamaa S, Zhangb H (2009) Effect of surface charge of magnetite nanoparticles on their internalization into breast cancer and umbilical vein endothelial cells. Colloids Surf B Biointerfaces 71(2):325–330

    Article  CAS  Google Scholar 

  • Ponti J, Colognato R, Franchini F, Gioria S, Simonelli F, Abbas K, Uboldi C, Kirkpatrick J, Holzwarth U, Rossi F (2009) A quantitative in vitro approach to study the intracellular fate of gold nanoparticles: from synthesis to cytotoxicity. Nanotoxicology 3(4):296–306. doi:10.1080/17435390903056384

    Article  CAS  Google Scholar 

  • Ponti J, Colognato R, Rauscher H, Gioria S, Broggi F, Franchini F, Pascual C, Giudetti G, Rossi F (2010) Colony Forming Efficiency and microscopy analysis of multi-wall carbon nanotubes cell interaction. Toxicol Lett 1 197(1):29–37. doi:10.1016/j.toxlet.2010.04.018

    Article  CAS  Google Scholar 

  • Sang JS, Reichel J, He B, Schuchman M, Lee S (2005) Magnetic nanotubes for magnetic-field-assisted bioseparation, biointeraction, and drug delivery. J Am Chem Soc 127(20):7316–7317

    Article  Google Scholar 

  • Scherer F, Anton M, Schillinger U et al (2002) Magnetofection: enhancing and targeting gene delivery by magnetic force in vitro and in vivo. Gene Ther 9(2):102–109. doi:10.1038/sj/gt/3301624

    Article  CAS  Google Scholar 

  • Service RF (2000) Is nanotechnology dangerous? Science 24 290(5496):1526–1527

    CAS  Google Scholar 

  • Simonelli F, Marmorato P, Abbas K, Ponti J, Kozempel J, Holzwarth U, Franchini F, Rossi F (2011) Cyclotron production of radioactive CeO2 nanoparticles and their application for in vitro uptake studies. IEEE-TNBS 10(1):44–50

    Google Scholar 

  • Teja AS, Koh PY (2009) Synthesis, properties, and applications of magnetic iron oxide nanoparticles. Prog Cryst Growth Charact Mater 55(1–2):22–45. doi:10.1016/j.pcrysgrow.2008.08.003

    Article  CAS  Google Scholar 

  • Xu QK, Shen H, Xu JR, Xie MQ, Li XJ (2006) The colloidal stability and core-shell structure of magnetite nanoparticles coated with alginate. Appl Surf Sci 253:2158–2164. doi:10.1016/j.apsusc.2006.04.015

    Article  CAS  Google Scholar 

  • Zeng H, Sun S (2008) Syntheses, properties, and potential applications of multicomponent magnetic nanoparticles. Adv Funct Mater 18:391–400. doi:10.1002/adfm.200701211

    Article  CAS  Google Scholar 

  • Ziegler JF, Ziegler MD, Biersack JP (2008) SRIM—the stopping and range of ions in matter. http://www.srim.org/. Accessed April 2011

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Simonelli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marmorato, P., Simonelli, F., Abbas, K. et al. 56Co-labelled radioactive Fe3O4 nanoparticles for in vitro uptake studies on Balb/3T3 and Caco-2 cell lines. J Nanopart Res 13, 6707–6716 (2011). https://doi.org/10.1007/s11051-011-0577-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-011-0577-7

Keywords

Navigation