Skip to main content
Log in

Novel synthesis of Ni x Zn1−x Fe2O4 (0 ≤ x ≤ 1) nanoparticles and their dielectric properties

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Nanocrystalline Ni x Zn1−x Fe2O4 (0 ≤ x ≤ 1) ferrite powders with average particle size 15–20 nm have been successfully prepared at a very low temperature (180 °C) by a novel auto combustion process using citric acid and ethylenediamine as a coordinating agent and bridging ligand, respectively. Phase purity of the solid solutions has been confirmed by X-ray diffraction. Morphological characterizations of the prepared samples were performed by high resolution transmission electron and field emission scanning electron microscopy. Extensive Fourier transformed infrared spectroscopic characterization has been carried out to identify the plausible mechanism of the synthesis process. Composition-dependent electrical properties (resistivity and dielectric constant) of the synthesized solid solution have been investigated. Interestingly, a non-linear variation of dielectric permittivity with respect to composition has been observed. The room temperature electrical resistivity as well as the dielectric permittivity of Ni0.5Zn0.5Fe2O4 was found to decrease with the decrease of particle size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Albuquerque S, Ardisson JD, Macedo WAA, Alves MCM (2000) Nanosized powders of NiZn ferrite: synthesis, structure, and magnetism. J Appl Phys 87:4352–4358

    Article  CAS  Google Scholar 

  • Allen AD, Senoff CV (1965) Infrared spectra of tris-ethylenediamine complexes of Ruthenium(II). Can J Chem 43:888–896

    Article  Google Scholar 

  • Ana Cristina F, Costa M, Morelli MR, Kiminami RHGA (2002) Combustion synthesis: effect of urea on the reaction and characteristics of Ni–Zn ferrite powders. J Mater Synth Proces 9:347–353

    Google Scholar 

  • Arulmurugan R, Jeyadevan B, Vaidyanathan G (2005) Effect of zinc substitution on Co–Zn and Mn–Zn ferrite nanoparticles prepared by co-precipitation. J Magn Magn Mater 288:470–477

    Article  CAS  Google Scholar 

  • Bardhan A, Ghosh CK, Mitra MK, Das GC, Mukherjee S, Chattopadhyay KK (2010) Low temperature synthesis of zinc ferrite nanoparticles. Solid State Sci 12:839–844

    Article  CAS  Google Scholar 

  • Brabers VAM (1969) Infrared spectra of cubic and tetragonal manganese ferrites. Phys Stat Sol 33:563–572

    Article  CAS  Google Scholar 

  • Brito VLO, Migliano ACC, Lemos L,V, Melo FCL (2009) Ceramic processing route and characterization of a Ni–Zn ferrite in application in a pulsed-current monitor. Prog Electromag Res 91:303–318

    Article  Google Scholar 

  • Cabanas A, Poliakoff M (2001) The continuous hydrothermal synthesis of nano-particulate ferrites in near critical and supercritical water. J Mater Chem 11:1408

    Article  CAS  Google Scholar 

  • Caizer C, Stefanescu M (2002) Magnetic characterization of nanocrystalline Ni–Zn ferrite powder prepared by the glyoxylate precursor method. J Phys D Appl Phys 35:3035–3040

    Article  CAS  Google Scholar 

  • Cannas C, Musinu A, Peddis D, Piccaluga G (2004) New synthesis of ferrite silica nanocomposites by a sol–gel autocombustion. J Nanoparticle Res 6(2–3):223–232

    Article  CAS  Google Scholar 

  • Chakraborty A, Maiti HS (1996) Chemical synthesis of barium zirconate titanate powder by an autocombustion technique. J Mater Chem 6(7):1169–1173

    Article  Google Scholar 

  • Chakraborty A, Sujatha Devi P, Roy S, Maiti HS (1994) Low-temperature synthesis of ultrafine La0.84Sr0.16MnO3 powder by an autoignition process. J Mater Res 9(4):986–991

    Article  CAS  Google Scholar 

  • Chatterjee A, Das D, Pradhan SK, Chakravorty D (1993) Synthesis of nanocrystalline nickel–zinc ferrite by the sol–gel method. J Magn Magn Mater 127:214–218

    Article  CAS  Google Scholar 

  • Chick LA, Pederson LR, Maupin GD, Bates JL, Thomas LE, Exarhos GJ (1990) Glycine–nitrate combustion synthesis of oxide ceramic powders. Mater Lett 10:6–12

    Article  CAS  Google Scholar 

  • Chun YZ, Xiang QS, Jian XZ, Mao XJ, Kai C (2007) Preparation of spinel ferrite NiFe2O4 fibres by organic gel–thermal decomposition process. J Sol-Gel Sci Techn 42:95–100

    Article  Google Scholar 

  • Cullity BD (1965) Elements of X-ray diffraction. Addison Wesley, Reading

    Google Scholar 

  • Cullity BD (1972) Introduction to magnetic materials. Addison-Werley, Reading

    Google Scholar 

  • Devi PS, Maiti HS (1994) A modified citrate gel route for the synthesis of phase pure Bi2Sr2CaCu2O8 superconductor. J Mater Res 9(6):1357–1362

    Article  CAS  Google Scholar 

  • Dias A, Moreira RL (1999) Chemical, mechanical and dielectric properties after sintering of hydrothermal nickel–zinc ferrites. Mater Lett 39:69–76

    Article  CAS  Google Scholar 

  • Dionne GF, West RG (1987) Magnetic and dielectric properties of the spinel ferrite system Ni0.65Zn0.35Fe2−x Mn x O. J Appl Phys 61:3868–3871

    Article  CAS  Google Scholar 

  • Ghazanfar U, Siddiqi SA, Abbas G (2005) Study of room temperature dc resistivity in comparison with activation energy and drift mobility of NiZn ferrites. Mater Sci Eng B 118:132–134

    Article  Google Scholar 

  • Guo D, Zhang Z, Lin M, Fan X, Chai G, Xu Y, Xue D (2009) Ni–Zn ferrite films with high resonance frequency in the gigahertz range deposited by magnetron sputtering at room temperature. J Phys D Appl Phys 42:125006–125010

    Article  Google Scholar 

  • Hon YM, Fung KZ, Hon MH (2001) Synthesis and characterization of Li1+δMn2−δO4 powders prepared by citric acid gel process. J Euro Ceram Soc 21:515–522

    Article  CAS  Google Scholar 

  • Ismel H, El Nimr MK, Abou El Ata AM, El Hiti MA, Ahmed MA (1995) Dielectric behavior of hexaferrites BaCo2−xZnxFe16O27. J Magn Magn Mater 150:403

    Article  Google Scholar 

  • Jahanbin T, Hashim M (2009) Magnetic and morphological characterization of Ni–Zn ferrite prepared from nano size starting powder via co-precipitation technique. Solid State Sci Technol 17:243–249

    Google Scholar 

  • Joshi HH, Kulkarni RG (1986) Susceptibility, magnetization and Mössbauer studies of the Mg–Zn ferrite system. J Mater Sci 21:2138–2142

    Article  CAS  Google Scholar 

  • Joshi G, Khot A, Sawant S (1988) Magnetisation, curie temperature and Y–K angle studies of Cu substituted and non substituted Ni–Zn mixed ferrites. Solid State Commun 65:1593–1595

    Article  CAS  Google Scholar 

  • Kingaley JJ, Patil KC (1988) A novel combustion process for the synthesis of fine particle a-alumina and related oxide materials. Mater Lett 6:427–432

    Article  Google Scholar 

  • Kittel C (1976) An introduction to solid state physics, 7th edn. Wiley, New York, p 160

    Google Scholar 

  • Kondo K, Chiba T, Ono H, Yoshida S (2003) Conducted noise suppression effect up to 3 GHz by NiZn ferrite film plated at 90 °C directly onto printed circuit board. J Appl Phys 93:7130–7132

    Article  CAS  Google Scholar 

  • Lee Y, Lee J, Bae CJ, Park JG, Noh HJ, Park JH, Hyeon T (2005) Large-scale synthesis of uniform and crystalline magnetite nanoparticles using reverse micelles as nanoreactors under reflux conditions. Adv Funct Mater 15:503–509

    Article  CAS  Google Scholar 

  • Liu RS, Wang WN, Chang CT (1989) Synthesis and characterization of high-Tc superconducting oxide by the modified citrate gel process. Jpn J Appl Phys 28:2155–2157

    Article  Google Scholar 

  • Liu XM, Shao-Yun F, Hong-Mei X, Lu-Ping Z (2007) Preparation and characterization of complex ferrite nanoparticles by a polymer-pyrolysis route. J Nanoparticle Res 9:1041–1046

    Article  CAS  Google Scholar 

  • Madan L, Sharma DK, Singh M (2005) Effect of processing and polarizer on the electrical properties of Mn–Zn ferrites. Ind J Pure Appl Phys 43:291

    Google Scholar 

  • Matsushita N, Kondo K, Yoshida S, Tada M, Yoshimura M, Abe M (2006) Ni–Zn ferrite films synthesized from aqueous solution usable for sheet-type conducted noise suppressors in GHz range. J Electroceram 16:557–560

    Article  CAS  Google Scholar 

  • Mukesh CD, Verma A, Kashyap CS, Dube DC, Thakur OP, Prakash C (2006) Structural, dielectric and magnetic properties of NiCuZn ferrite grown by citrate precursor method. Mat Sci Eng B 133:42–48

    Article  Google Scholar 

  • Nakamoto K (1997) Infrared and Raman spectroscopy of inorganic and coordination compounds, Part B. Application in coordination, organometallic and bioinorganic chemistry, 5th edn. Wiley, New York

    Google Scholar 

  • Pechini M (1967) US Patent 3330697, 11 July 1967

  • Pederson LR, Maupin GD, Weber WJ, McReady DJ, Stephen RW (1991) Combustion synthesis of YBa2Cu3O7−x glycine/metal nitrate method. Mater Lett 10:437–443

    Article  CAS  Google Scholar 

  • Potakova VA, Zerery WD, Romanov VR (1972) On the cation distribution in Ni(1−x−y)Fe 2+x ZnyFe2 3+O4 spinel ferrites. Phys Status Solidi (a) 12:623–627

    Article  CAS  Google Scholar 

  • Prakash C, Baijal JS (1985) Electrical conductivity of Ni–Zn ferrites doped with Ti4+ ions. J Less-Common Met 106:257

    Article  Google Scholar 

  • Ravindranathan P, Patil KC (1986) A one-step process for the preparation of γ-iron oxide (γ-Fe2O3). J Mater Sci Lett 5:221–222

    Article  CAS  Google Scholar 

  • Ravindranathan P, Mahesh GV, Patil KC (1987) Low-temperature preparation of fine-particle cobaltites. J Solid State Chem 66:20–25

    Article  CAS  Google Scholar 

  • Roberto A, Carla C, Anna M, Gabriella P, Giorgio P, Mariano C (2008) A two-stage citric acid–sol/gel synthesis of ZnO/SiO2 nanocomposites: study of precursors and final products. J Nanoparticle Res 10:107–120

    Google Scholar 

  • Shafer S, Sigmund W, Roy S, Aldinger F (1997) Low temperature synthesis of ultrafine Pb(Zr, Ti)O3 powder by sol–gel combustion. J Mater Res 12(10):2518–2521

    Article  Google Scholar 

  • Sheikh AD, Mathe VL (2008) Anomalous electrical properties of nanocrystalline Ni–Zn ferrite. J Mater Sci 43:2018–2025

    Article  CAS  Google Scholar 

  • Singh AK, Goel TC, Mendiratta RG (2002) Dielectric properties of Mn-substituted Ni–Zn ferrites. J Appl Phys 91:6626–6630

    Article  CAS  Google Scholar 

  • Sivakumar N, Narayanasamy A, Ponpandian N, Govindaraj G (2007) Grain size effect on the dielectric behavior of nanostructured Ni0.5Zn0.5Fe2O4. J Appl Phys 101(084116):1–6

    Google Scholar 

  • Strathmann TJ, Satish MCB (2004) Speciation of aquous Ni(ii)-Fulyic acid solution: combined ATR-FTIR and XAFS analysis. Geochim Cosmochim Ac 68(17):3441–3458

    Article  CAS  Google Scholar 

  • Takahashi R, Sato S, Sodesawa T, Kawakita M, Ogura K (2000) High surface-area silica with controlled pore size prepared from nanocomposite of silica and citric acid. J Phys Chem B 104:12184–12191

    Article  CAS  Google Scholar 

  • Uitert LGV (1955) dc Resistivity in the nickel and nickel zinc ferrite system. J Chem Phys 23:1883–1888

    Article  Google Scholar 

  • VD-Zhetcheva Kassabova (2009) Characterization of the citrate precursor used for synthesis of nanosized Mg–Zn ferrites. Cent Eur J Chem 7(3):415–422

    Article  Google Scholar 

  • Verma A, Goel TC, Mendiratta RG (2000) Low temperature processing of NiZn ferrite by citrate precursor method and study of properties. Mater Sci Tech Ser 16:712–715

    CAS  Google Scholar 

  • Waldron RD (1955) Infrared spectra of ferrites. Phys Rev 99:1727–1735

    Article  CAS  Google Scholar 

  • Warren BE (1969) X-ray diffraction. Addison-Wesley, Reading

    Google Scholar 

  • Williamson K, Hall WH (1953) X-ray line broadening from filed aluminium and wolfram. Acta Metall 1:22

    Article  CAS  Google Scholar 

  • Yener DO, Giesche H (2001) Synthesis of pure and manganese, nickel, and zinc, doped ferrite particles in water-in-oil microemulsions. J Am Ceram Soc 84:1987–1995

    Article  CAS  Google Scholar 

  • Yutaka T, Sasao T, Abe M, Itoh T (1990) Ferrite formation in aqueous solution at 100–200 °C. J Colloid Interf Sci 136:242–248

    Article  Google Scholar 

  • Zhang H, Jia X, Yan Y, Liu Z, Yang D, Li Z (2004) The effect of the concentration of citric acid and pH values on the preparation of MgAl2O4 ultrafine powder by citrate sol-gel process. Mater Res Bull 39:839–850

    Article  CAS  Google Scholar 

Download references

Acknowledgments

K. Bhattacharjee wishes to thank the University Grants Commission (UGC), the Government of India for financial assistance under the University with the “potential for excellence” programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kalyan Kumar Chattopadhyay.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhattacharjee, K., Ghosh, C.K., Mitra, M.K. et al. Novel synthesis of Ni x Zn1−x Fe2O4 (0 ≤ x ≤ 1) nanoparticles and their dielectric properties. J Nanopart Res 13, 739–750 (2011). https://doi.org/10.1007/s11051-010-0074-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-010-0074-4

Keywords

Navigation