Skip to main content
Log in

Computational approach to drying a nanoparticle-suspended liquid droplet

  • Technology and Applications
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

We suggest a computational approach for estimating the ring-like deposition of nanoparticles contained in a drying liquid droplet. The proposed method involves a Monte Carlo scheme, based on three independent probabilistic processes: (a) evaporation at the liquid surface, (b) convective motion of nanoparticles to the contact line, and (c) treatment of the nanoparticles floating in the air. According to the computational results, while the liquid is evaporating in nanoparticle-suspended liquid droplet (NSLD), the nanoparticles are moved to the contact line as the mass of droplet decreases linearly with time. Since the resulting ring-like deposition can be accounted for in terms of nanoparticle mobility and liquid evaporation from the droplet, our computational approach achieves a morphological and kinematical description of NSLD drying. Some other important features, such as self-pinning of the contact line, reduction of the droplet radius, and pattern formation, are also obtained from this simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Anderson MP, Srolovitz DJ, Grest GS, Sahni PS (1984) Computer simulation of grain growth—I. Kinetics. Acta Metall 32:783–791

    Article  CAS  Google Scholar 

  • Blossey R, Bosio A (2002) Contact line deposits on cDNA microarrays: a twin-spot effect. Langmuir 18:2952–2954

    Article  CAS  Google Scholar 

  • Cheng G, Puntes VF, Guo T (2006) Synthesis and self-assembled ring structures of Ni nanocrystals. J Colloid Interface Sci 293:430–436

    Article  CAS  Google Scholar 

  • Conway J, Korns H, Fisch MR (1997) Evaporation kinematics of polystyrene bead suspensions. Langmuir 13:426–431

    Article  CAS  Google Scholar 

  • De Gans B-J, Duineveld PC, Schubert US (2004) Inkjet printing of polymers: state of the art and future developments. Adv Mater 16:203–213

    Article  Google Scholar 

  • Deegan RD (2000) Pattern formation in drying drops. Phys Rev E 61:475–485

    Article  CAS  Google Scholar 

  • Deegan RD, Bakajin O, Dupont TF, Huber G, Nagel SR, Witten TA (1997) Capillary flow as the cause of ring stains from dried liquid drops. Nature 389:827–829

    Article  CAS  Google Scholar 

  • Deegan RD, Bakajin O, Dupont TF, Huber G, Nagel SR, Witten TA (2000) Contact line deposits in an evaporating drop. Phys Rev E 62:756–765

    Article  CAS  Google Scholar 

  • Ge G, Brus LE (2001) Fast surface diffusion of large disk-shaped nanocrystal aggregates. Nano Lett 1:219–222

    Article  CAS  Google Scholar 

  • Gelbart WM, Ben-Shaul A (1996) The new science of complex fluids. J Phys Chem 100:13169–13189

    Article  CAS  Google Scholar 

  • Govor LV, Reiter G, Parisi J, Bauer GH (2004) Self-assembled nanoparticle deposits formed at the contact line of evaporating micrometer-size droplets. Phys Rev E 69:061609

    Article  Google Scholar 

  • Hu H, Larson RG (2002) Evaporation of a sessile droplet on a substrate. J Phys Chem B 106:1334–1344

    Article  CAS  Google Scholar 

  • Hu H, Larson RG (2005a) Analysis of the microfluid flow in an evaporating sessile droplet. Langmuir 21:3963–3971

    Article  CAS  Google Scholar 

  • Hu H, Larson RG (2005b) Analysis of the effects of Marangoni stresses on the microflow in an evaporating sessile droplet. Langmuir 21:3972–3980

    Article  CAS  Google Scholar 

  • Jang J, Oh JH (2004) Morphogenesis of evaporation-induced self-assemblies of polypyrrole nanoparticles dispersed in a liquid medium. Langmuir 20:8419–8422

    Article  CAS  Google Scholar 

  • Kagan CR, Murray CB, Nirmal M, Bawendi MG (1996) Electronic energy transfer in CdSe quantum dot solids. Phys Rev Lett 76:1517–1520

    Article  CAS  Google Scholar 

  • Kletenik-Edelman O, Ploshnik E, Salant A, Shenhar R, Banin U, Rabani E (2008) Drying-mediated hierarchical self-assembly of nanoparticles: a dynamical coarse-grained approach. J Phys Chem C 112:4498–4506

    Article  CAS  Google Scholar 

  • Kletenik-Edelman O, Sztrum-Vartash CG, Rabani E (2009) Coarse-grained lattice models for drying-mediated self-assembly of nanoparticles. J Mater Chem 19:2872–2876

    Article  CAS  Google Scholar 

  • Magdassi S, Bassa A, Vinetsky Y, Kamyshny A (2003) Silver nanoparticles as pigments for water-based ink-jet inks. Chem Mater 15:2208–2217

    Article  CAS  Google Scholar 

  • Magdassi S, Grouchko M, Toker D, Kamyshny A, Balberg I, Millo O (2005) Ring stain effect at room temperature in silver nanoparticles yields high electrical conductivity. Langmuir 21:10264–10267

    Article  CAS  Google Scholar 

  • Maillard M, Motte L, Ngo AT, Pileni MP (2000) Rings and hexagons made of nanocrystals: a Marangoni effect. J Phys Chem B 104:11871–11877

    Article  CAS  Google Scholar 

  • Maillard M, Motte L, Pileni MP (2001) Rings and hexagons made of nanocrystals. Adv Mater 13:200–204

    Article  CAS  Google Scholar 

  • Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AN, Teller E (1953) Equation of state calculations by fast computing machines. J Chem Phys 21:1087–1092

    Article  CAS  Google Scholar 

  • Ohara PC, Gelbart WM (1998) Interplay between hole instability and nanoparticle array formation in ultrathin liquid films. Langmuir 14:3418–3424

    Article  CAS  Google Scholar 

  • Ohara PC, Heath JR, Gelbart WM (1997) Self-assembly of submicrometer rings of particles from solutions of nanoparticles. Angew Chem Int Ed 36:1078–1080

    Article  CAS  Google Scholar 

  • Pauliac-Vaujour E, Moriarty P (2007) Meniscus-mediated organization of colloidal nanoparticles. J Phys Chem C 111:16255–16260

    Article  CAS  Google Scholar 

  • Pauliac-Vaujour E, Stannard A, Martin CP, Blunt MO, Notingher I, Moriarty PJ, Vancea I, Thiele U (2008) Fingering instabilities in dewetting nanofluids. Phys Rev Lett 100:176102

    Article  CAS  Google Scholar 

  • Rabani E, Reichman DR, Geissler PL, Brus LE (2003) Drying-mediated self-assembly of nanoparticles. Nature 426:271–274

    Article  CAS  Google Scholar 

  • Shafi KVPM, Felner I, Mastai Y, Gedanken A (1999) Olympic ring formation from newly prepared barium hexaferrite nanoparticle suspension. J Phys Chem A 103:3358–3360

    CAS  Google Scholar 

  • Srolovitz DJ, Grest GS, Anderson MP (1986) Computer simulation of recrystallization—I. Homogeneous nucleation and growth. Acta Metall 34:1833–1845

    Article  CAS  Google Scholar 

  • Stannard A, Martin CP, Pauliac-Vaujour E, Moriarty P, Thiele U (2008) Dual-scale pattern formation in nanoparticle assemblies. J Phys Chem C 112:15195–15203

    Article  CAS  Google Scholar 

  • Stowell C, Korgel BA (2001) Self-assembled honeycomb networks of gold nanocrystals. Nano Lett 1:595–600

    Article  CAS  Google Scholar 

  • Sztrum CG, Hod O, Rabani E (2005) Self-assembly of nanoparticles in three-dimensions: formation of stalagmites. J Phys Chem B 109:6741–6747

    Article  CAS  Google Scholar 

  • Sztrum CG, Rabani E (2006) Out-of-equilibrium self-assembly of binary mixture of nanoparticles. Adv Mater 18:565–571

    Article  CAS  Google Scholar 

  • Takagahara T (1992) Quantum dot lattice and enhanced excitonic optical nonlinearity. Surf Sci 267:310–314

    Article  CAS  Google Scholar 

  • Thiele U, Vancea I, Archer AJ, Robbins MJ, Frastia L, Stannard A, Pauliac-Vaujour E, Martin CP, Blunt MO, Moriarty PJ (2009) Modelling approaches to the dewetting of evaporating thin films of nanoparticle suspensions. J Phys Condens Mater 21:264016

    Article  Google Scholar 

  • Tikare V, Cawley JD (1998) Numerical simulation of grain growth in liquid phase sintered materials—I. Model. Acta Mater 46:1333–1342

    Article  CAS  Google Scholar 

  • Vancea I, Thiele U, Pauliac-Vaujour E, Stannard A, Martin CP, Blunt MO, Moriarty PJ (2008) Front instabilities in evaporatively dewetting nanofluids. Phys Rev E 78:041601

    Article  CAS  Google Scholar 

  • Yarin AL, Szczech JB, Megaridis CM, Zhang J, Gamota DR (2006) Lines of dense nanoparticle colloidal suspensions evaporating on a flat surface: formation of non-uniform dried deposits. J Colloid Interface Sci 294:343–354

    Article  CAS  Google Scholar 

  • Yosef G, Rabani E (2006) Self-assembly of nanoparticles into rings: a lattice-gas model. J Phys Chem B 110:20965–20972

    Article  CAS  Google Scholar 

  • Zhou WL, He J, Fang J, Huynh TA, Kennedy TJ, Stokes KL, O’Connor CJ (2003) Self-assembly of FePt nanoparticles into nanorings. J Appl Phys 93:7340–7342

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sung Soo Park.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, HS., Park, S.S. & Hagelberg, F. Computational approach to drying a nanoparticle-suspended liquid droplet. J Nanopart Res 13, 59–68 (2011). https://doi.org/10.1007/s11051-010-0062-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-010-0062-8

Keywords

Navigation