Skip to main content
Log in

Synthesis of flower-like cobalt nanostructures: optimization by Taguchi design

  • Research paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

In this research, flower-like cobalt nanostructures were synthesized in a solution of water and ethylene glycol under microwave radiation without using metal foils or templates for self-assembly. The synthesized nanoparticles were completely stable in free air. Size distribution and phase of nanoparticles can be controlled through the synthetic process. X-Ray Diffraction (XRD), Fourier Transform IR (FTIR), and Scanning Electron Microscopy (SEM) measurements were carried out to investigate the structural properties and to interpret the formation process of flower-like cobalt nanostructures. Size distribution and average size of particles were determined by Dynamic Laser Light Scattering (DLLS) measurements. Thermal Gravimetric Analysis (TGA) was used to investigate the thermal stability of cobalt nanoparticles. All experiments were designed to fulfill the L8 Taguchi design and data analysis was performed using MINITAB software.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Chen W, Cai W, Zhang L, Wang G, Zhang L (2001) Sonochemical processes and formation of gold nanoparticles within pores of mesoporous silica. J Colloid Interface Sci 238:291–295

    Article  CAS  PubMed  Google Scholar 

  • Erasmus WJ, Steen EV (2007) Some insights in the sonochemical preparation of cobalt nano-particles. Ultrasonics Sonochem 14:732–738

    Article  CAS  Google Scholar 

  • Forsman J, Tapper U, Auvinen A, Jokiniemi J (2008) Production of cobalt and nickel particles by hydrogen reduction. J Nanopart Res 10:745–759

    Article  CAS  Google Scholar 

  • He QJ, Huang ZL (2007) Template-directed growth and characterization of flowerlike porous carbonated hydroxyapatite spheres. Cryst Res Technol 5:460–465

    Article  Google Scholar 

  • Jia Y, Niu H, Wu M, Ning M, Zhu H, Chen Q (2005) Sonochemical preparation of bimetallic Co/Cu nanoparticles in aqueous solution. Mater Res Bull 40:1623–1629

    Article  CAS  Google Scholar 

  • Jitputti J, Rattanavoravipa T, Chuangchote S, Pavasupree S, Suzuki Y, Yoshikawa S (2009) Low temperature hydrothermal synthesis of monodispersed flower-like titanate nanosheets. Catal Commun 10:378–382

    Article  CAS  Google Scholar 

  • Kellner R, Mermet JM, Otto M, Widmer HM (1998) Analytical chemistry. Wiley-Vch, Weinheim, p 767

    Google Scholar 

  • Kobayashi Y, Horie M, Konno M, Gonzalez BR, Liz-Marzan LM (2003) Preparation and properties of silica-coated cobalt nanoparticles. J Phys Chem 107:7420–7425

    CAS  Google Scholar 

  • Ławecka M, Kopcewicz M, Slawska-Waniewska A, Leonowicz M, Kozubowski J, Dzhardimalieva GI, Rozenberg AS, Pomogailo AD (2002) Formation, structure and magnetic properties of polymer matrix nanocomposites processed by thermal decomposition of the Fe(III)Co(II) acrylate complex. J Nanopart Res 4:261–264

    Article  Google Scholar 

  • Li J, Qin Y, Kou X, He H, Song D (2004) Structure and magnetic properties of cobalt nanoplatelets. Mater Lett 58:2506–2509

    Article  CAS  Google Scholar 

  • Petit C, Taleb A, Pileni MP (1999) Cobalt nanosized particles organized in a 2D superlattice: synthesis, characterization, and magnetic properties. J Phys Chem 103:1805–1810

    CAS  Google Scholar 

  • Pol VG, Gedanken A, Moreno JC (2003) Deposition of gold nanoparticles on silica spheres: a sonochemical approach. Chem Mater 15:1111–1118

    Article  CAS  Google Scholar 

  • Rao CNR, Muller A, Cheetham AK (2004) The chemistry of nanomaterials: synthesis, properties and applications. Wiley-VCH, Weinheim

    Google Scholar 

  • Roy RK (2001) Design of experiments using the Taguchi approach: 16 steps to product and process improvement. Wiley, New York

    Google Scholar 

  • Shao H, Huang Y, Lee H, Suh YJ, Kim CO (2006) Cobalt nanoparticles synthesis from Co(CH3COO)2 by thermal decomposition. J Magn Magn Mater 304:28–30

    Article  ADS  Google Scholar 

  • Shi H, Qi L, Ma J, Wu N (2005) Architectural control of hierarchical nanobelt superstructures in catanionic reverse micelles. Adv Funct Mater 3:442–450

    Article  Google Scholar 

  • Skowronski JM, Wazny A (2005) Nickel foam-based composite electrodes for electrooxidation of methanol. J Solid State Electrochem 9:890–899

    Article  CAS  Google Scholar 

  • Song Y, Modrow H, Henry LL, Saw CK, Doomes EE, Palshin V, Hormes JCS, Kumar SR (2006) Microfluidic synthesis of cobalt nanoparticles. Chem Mater 18:2817–2827

    Article  CAS  Google Scholar 

  • Wang C, Fang J, He J, O’Connor CJ (2003) Synthesis of one-dimensional magnetic Co nanoparticles in a novel solution system. J Colloid Interface Sci 259:411–413

    Article  CAS  PubMed  Google Scholar 

  • Wu SH, Chen DH (2003) Synthesis and characterization of nickel nanoparticles by hydrazine reduction in ethylene glycol. J Colloid Interface Sci 259:282–286. doi:10.1016/S0021-9797(02)00135-2

    Article  CAS  PubMed  Google Scholar 

  • Xu H, Zhao Q, Yang H, Chen Y (2008) Study of magnetic properties of ZnO nanoparticles codoped with Co and Cu. J Nanopart Res 11(3):615–621

    Article  Google Scholar 

  • Yang H, Hu Y, Zhang X, Qiu G (2004a) Mechanochemical synthesis of cobalt oxide nanoparticles. Mater Lett 58:387–389

    Article  CAS  Google Scholar 

  • Yang HT, Su YK, Shen CM, Yang TZ, Gao HJ (2004b) Synthesis and magnetic properties of ε-cobalt nanoparticles. Surf Interface Anal 36:155–160

    Article  CAS  Google Scholar 

  • Yang LX, Zhu YJ, Li L, Zhang L, Tong H, Wang WW, Cheng GF, Zhu JF (2006) A facile hydrothermal route to flower-like cobalt hydroxide and oxide. Eur J Inorg Chem 2006:4787–4792

    Article  Google Scholar 

  • Zalich MA, Saunders M, Baranauskas VV, Vadala ML, Riffle JS, St. Pierre TG (2005) Structural analysis of macromolecule-cobalt nanoparticle complexes. Microsc Microanal 2:1898–1899

    Google Scholar 

  • Zeng S, Tang K, Li T, Liang Z (2007) 3D flower-like Y2O3:Eu3+ nanostructures: template-free synthesis and its luminescence properties. J Colloid and Interface Sci 316:921–929

    Article  CAS  Google Scholar 

  • Zhang YJ, Zhang Y, Wang ZH, Li D, Cui TY, Liu W, Zhang ZD (2008) Controlled synthesis of cobalt flowerlike architectures by a facile hydrothermal route. Eur J Inorg Chem 2008:2733–2738

    Article  Google Scholar 

  • Zhao Q, Li Z, Wu C, Bai X, Xie Y (2006) Facile synthesis and optical property of SnO2 flower-like architectures. J Nanopart Res 8:1065–1069

    Article  CAS  Google Scholar 

  • Zhu Y, Yang Q, Zheng H, Yu W, Qian Y (2005) Flower-like cobalt nanocrystals by a complex precursor reaction route. Mater Chem Phys 91:293–297

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Shojaee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shojaee, K., Edrissi, M. & Izadi, H. Synthesis of flower-like cobalt nanostructures: optimization by Taguchi design. J Nanopart Res 12, 1439–1447 (2010). https://doi.org/10.1007/s11051-009-9709-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-009-9709-8

Keywords

Navigation