, Volume 12, Issue 1, pp 101-109
Date: 08 Jan 2009

One-pot synthesis of oleic acid-capped cadmium chalcogenides (CdE: E = Se, Te) nano-crystals

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

Surface-capped CdSe and CdTe nano-crystals (NCs) have been synthesized using cadmium acetate, oleic acid and respective tri-octylphosphine chalcogenide (TOPE; E = Se/Te) in diphenyl ether (DPE). Well-dispersed CdSe particles showed two absorption bands at the region of 431–34 and 458–60 nm in optical absorption study. A band-edge emission resulted at 515 nm with an excitation energy of 400 nm, in its photoluminescence (PL) spectrum. Similarly, UV–visible absorption study of CdTe revealed an absorption band at <700 nm. The broadened X-ray diffraction (XRD) pattern showed that at higher reaction temperature cubic CdSe but hexagonal CdTe can be obtained with crystallite size of <10 nm. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) revealed that agglomerated particles are of spherical nature. The inter-planar spacing in CdTe was measured to be 0.406 nm, a characteristic of (100) lattice plane in hexagonal CdTe. X-ray photoelectron spectroscopy (XPS) showed that CdSe NCs have better air stability stable than CdTe. Presence of organic moiety around the semiconductor particles was confirmed by infra-red (IR) spectroscopy.

PKK dedicates this work to his late father-RP Khanna