Skip to main content
Log in

Gold nanoparticles modified GC electrodes: electrochemical behaviour dependence of different neurotransmitters and molecules of biological interest on the particles size and shape

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Gold colloidal nanoparticles (AuNps), synthesized by gold chloride hydrate (HAuCl4) chemical reduction were used to realize a modified glassy carbon electrode (GCE). Different shapes and sizes were observed, varying the molar ratio of HAuCl4 and polyvinylpyrrolidone (PVP). The electrochemical behaviour of different neurotransmitters and molecules of biological interest (dopamine, caffeic acid, catechol, uric acid, epinephrine and serotonin) were investigated by cyclic voltammetry (CV) at the AuNps modified GCE and a dependence of the electrochemical response on the size and the shape of the particles was observed. The electrochemical responses were stable during time with a generic decreasing of the peak current after 10 days ranging from 5–10% for catechol, uric acid and serotonine to 10–15% for the other analytes. A study on the electrochemical interface of modified electrodes was also carried out by means of electrochemical impedance spectroscopy (EIS).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ahlskog JE, Uitti RJ, Tyce GM et al (1996) Plasma catechols and monoamine oxidase metabolites in untreated Parkinson’s and Alzheimer’s diseases. J Neurol Sci 136:162–168. doi:10.1016/0022-510X(95)00318-V

    Article  CAS  PubMed  Google Scholar 

  • Bard AJ, Faulkner LR (1980) Techniques based on concepts of impedance. In: Electrochemical methods: fundamentals and applications, Chapter 9. Wiley, New York, pp 316–330

  • Bonet F, Delmas V, Grugeon S, Herrera Urbina R, Silvert P-Y, Tekaia-Elhsissen K (1999) Synthesis of monodisperse Au, Pt, Pd, Ru and Ir nanoparticles in ethylene glycol. Nanostruct Mater 11:1277–1284

    Article  CAS  Google Scholar 

  • Boukamp BA (1986) A non-linear least squares fit procedure for analysis of immittance data of electrochemical systems. Solid State Ion 20:31–44. doi:10.1016/0167-2738(86)90031-7

    Article  CAS  Google Scholar 

  • Brown KR, Walter DG, Natan MJ (2000) Seeding of colloidal au nanoparticle solutions. 2. Improved control of particle size shape. Chem Mater 12:306–313

    Article  CAS  Google Scholar 

  • Burda C, Chen X, Narayanan R, El-Sayed MA (2005) Chemistry and properties of nanocrystals of different shapes. Chem Rev 105:1025–1102. doi:10.1021/cr030063a

    Article  CAS  PubMed  Google Scholar 

  • Chang SS, Shih CW, Chen CD, Lai WC, Wang C (1999) The shape transition of gold nanorods. Langmuir 15:701–709. doi:10.1021/la980929l

    Article  CAS  Google Scholar 

  • Chimi H, Cillard J, Cillard P, Rahmani M (1991) Peroxyl and hydroxyl radical scavenging activity of some natural phenolic antioxidants. J Am Oil Chem Soc 68:307–312. doi:10.1007/BF02657682

    Article  CAS  Google Scholar 

  • Creighton JA, Eadon DG (1991) Ultraviolet–visible absorption spectra of the colloidal metallic elements. J Chem Soc Faraday Trans 87:3881–3891. doi:10.1039/ft9918703881

    Article  CAS  Google Scholar 

  • Curulli A, Valentini F, Padeletti G, Viticoli M, Caschera D, Palleschi G (2005) Smart (nano) materials: TiO2 nanostructured films to modify electrodes for assembling of new electrochemical probes. Sensors Actuators B 111–112:526–531 (and references cited therein). doi:10.1016/j.snb.2005.03.084

  • Ducamp-Sanguesa C, Herrera-Orbina R, Figlarz M (1992) Synthesis and characterization of fine and monodisperse silver particles of uniform shape. J Solid State Chem 100:272–280. doi:10.1016/0022-4596(92)90101-Z

    Article  CAS  ADS  Google Scholar 

  • Esumi K, Pal T (2005) Preparation of nanosized gold particles in a biopolymer using UV photoactivation. J Colloid Interface Sci 288:396–401. doi:10.1016/j.jcis.2005.03.048

    Article  PubMed  CAS  Google Scholar 

  • Fievet F, Lagier JP, Blin B et al (1989) Homogeneous and heterogeneous nucleations in the polyol process for the preparation of micron and submicron size metal particles. Solid State Ion 32(33):198–205. doi:10.1016/0167-2738(89)90222-1

    Article  Google Scholar 

  • Fujimoto T, Terauchi S, Umehara H, Kojima I, Henderson W (2001) Sonochemical Preparation of Single-Dispersion Metal Nanoparticles from Metal Salts. Chem Mater 13:1057–1060. doi:10.1021/cm000910f

    Article  CAS  Google Scholar 

  • Haiss W, Thanh NTK, Aveyard J, Fernig DG (2007) Determination of size and concentration of gold nanoparticles from UV–Vis Spectra. Anal Chem 79:4215–4221. doi:10.1021/ac0702084

    Article  CAS  PubMed  Google Scholar 

  • Handley DA (1989) Colloidal gold: principles, methods and applications, vol 1. Academic Press, New York, pp 494–513 Chap.18

    Google Scholar 

  • Huang H, Yang X (2005) One-step, shape control synthesis of gold nanoparticles stabilized by 3-thiopheneacetic acid. Colloids Surf A Physicochem Eng Asp 255:11–17. doi:10.1016/j.colsurfa.2004.12.020

    Article  CAS  Google Scholar 

  • Jana NR, Gearheart L, Murphy CJ (2001) Seed-mediated growth approach for shape-controlled synthesis of spheroidal and rod-like gold nanoparticles using a surfactant template. Adv Mater 14:1389–1393

    Article  Google Scholar 

  • Jian-Shan Y, Ying W, Wei DZ, Leong MG, Guo QX, Fwu-Shan S (2003) Selective voltammetric detection of uric acid in the presence of ascorbic acid at well-aligned carbon nanotube electrode. Electroanalysis 15:1693–1698. doi:10.1002/elan.200302740

    Article  CAS  Google Scholar 

  • Kaczmarek H, Kaminska A, Swiatek M, Rabek JF (1998) Photo-oxidative degradation of some water-soluble polymers in the presence of accelerating agents. Angew Makromol Chem 261–262:109–121. doi:10.1002/(SICI)1522-9505(19981201)261-262:1<109::AID-APMC109>3.0.CO;2-S

    Article  Google Scholar 

  • Kopin IJ (1985) Catecholamine metabolism: basic aspects and clinical significance. J Pharmacol Rev 37:333–364

    CAS  Google Scholar 

  • Li C, Cai W, Kan C, Fu G, Zhang L (2004) Ultrasonic solvent induced morphological change of Au colloids. Mater Lett 58:196–199. doi:10.1016/S0167-577X(03)00444-0

    Article  CAS  Google Scholar 

  • Liz- Marzan LM (2004) Nanometals: formation and color. Mater Today 7:26–31

  • Mandal M, Ghosh SK, Kundu S, Esumi K, Pal T (2002) UV Photoactivation for size and shape controlled synthesis and coalescence of gold nanoparticles in micelles. Langmuir 18:7792–7797

    Article  CAS  Google Scholar 

  • Mie G (1908) Beitraege zur Optik Trueber Medien, Speziell-Kolloidaler Metalosungen. Ann Phys 25:377–445

    Article  CAS  Google Scholar 

  • Nakayama T, Kuno T, Hiramitsu M, Osawa T, Kawakiehi S (1993) Antioxidative and prooxidative of caffeic acid toward H2O2-induced DNA strand breakage dependent on the state of the Fe ion in the medium. Biosci Biotechnol Biochem 57:174–176

    Article  CAS  Google Scholar 

  • Olanow CW (1990) Oxidation reactions in Parkinson’s disease. Neurology 40:32–37

    PubMed  Google Scholar 

  • Porel S, Singh S, Radhakrishnan TP (2005) Polygonal gold nanoplates in a polymer matrix. Chem Comm 2387–2389

  • Puntes VF, Krishnan K, Alivisatos AP (2002) Synthesis of colloidal cobalt nanoparticles with controlled size and shapes. Top Catal 19(2):145–148

    Article  CAS  Google Scholar 

  • Robinson HM, Hood SD (2007) Social anxiety disorder-a review of pharmacological treatments. Curr Psychiatry Rev 3(2):95–122

    Article  CAS  Google Scholar 

  • Sau TK, Murphy CJ (2005) Self-assembly patterns formed upon solvent evaporation of aqueous cetyltrimethylammonium bromide-coated gold nanoparticles of various shapes. Langmuir 21:2923–2929

    Article  CAS  PubMed  Google Scholar 

  • Shahrokhian S, Hamzehloei A (2003) Electrochemical oxidation of catechol in the presence of 2-thiouracil: application to electro-organic synthesis. Electrochem Commun 5:706–710

    Article  CAS  Google Scholar 

  • Shao Y, Jin Y, Dong S (2004) Synthesis of gold nanoplates by aspartate reduction of gold chloride. ChemComm, 1104–1105

  • Shen-Ming C, Kuo-Tzu P (2003) The electrochemical properties of dopamine, epinephrine, norepinephrine, and their electrocatalytic reactions on cobalt(II) hexacyanoferrate films. J Electroanal Chem 547:179–189

    Article  CAS  Google Scholar 

  • Sionkowska A, Wisniewski M, Skopiuska J, Vicini S, Marsani E (2005) The influence of UV irradiation on the mechanical properties of chitosan/poly(vinyl pyrrolidone) blends. Polym Degrad Stab 88:261–267

    Article  CAS  Google Scholar 

  • Sotonyi P, Merkely B, Hubay M, Jaray J, Zima E, Kovacs A, Szentmariay I (2004) Comparative study on cardiotoxic effect of tinuvin 770: a light stabilizer of medical plastics in rat model. Toxicol Sci 77:368–374

    Article  CAS  PubMed  Google Scholar 

  • Staszewska DU (1983) The oxidation of poly(vinyl pyrrolidone) with Ce(IV). Angew Makromol Chem 118:1–17

    Article  CAS  Google Scholar 

  • Sun Y, Xia Y (2002) Shape-controlled synthesis of gold and silver nanoparticles. Science 298:2176–2179

    Article  CAS  PubMed  ADS  Google Scholar 

  • Tan Y, Dai X, Li Y, Zhu D (2003) Preparation of gold, platinum, palladium and silver nanoparticles by the reduction of their salts with a weak reductant—potassium bitartrate. J Mater Chem 13:1069–1075

    Article  CAS  Google Scholar 

  • Valentini F, Orlanducci S, Tamburri E, Terranova ML, Curulli A, Palleschi G (2005) Single-walled carbon nanotubes on tungsten wires: a new class of microelectrochemical sensors. Electroanalysis 17(1):28–37

    Article  CAS  Google Scholar 

  • Wang J, Li M, Shi Z, Li N, Gu Z (2001) Electrocatalytic oxidation of 3,4-dihydroxyphenylacetic acid at a glassy carbon electrode modified with single-wall carbon nanotubes. Electrochim Acta 47:651–657

    Article  CAS  Google Scholar 

  • Wang Z, Liu D, Dong S (2001) In situ infrared spectroelectrochemical studies on adsorption and oxidation of nucleic acids at glassy carbon electrode. Bioelectrochemistry 53:175–181

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Yan J, Chen L (2005) Formation of gold nanoparticles and self-assembly into dimer and trimer aggregates. Mater Lett 59:1383–1386

    Article  CAS  Google Scholar 

  • Zhang J, Bond AM (2003) Conditions required to achieve the apparent equivalence of adhered solid- and solution-phase voltammetry for ferrocene and other redox-active solids in ionic liquids. Anal Chem 75:2694–2702

    Article  CAS  PubMed  Google Scholar 

  • Zhou Y, Wang CY, Zhu YR, Chen ZY (1999) A novel ultraviolet irradiation technique for shape-controlled synthesis of gold nanoparticles at room temperature. Chem Mater 11:2310–2312

    Article  CAS  Google Scholar 

  • Zhou QF, Bao JC, Xu Z (2002) Shape-controlled synthesis of nanostructured gold by a protection–reduction technique. J Mater Chem 12:384–387

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Thanks are due to the group of Prof. Bemporad for the helpful assistance in TEM analysis in the LIME Laboratory of University of RomaTre and to Mr C. Veroli (X-Ray Laboratory ISMN-CNR) for his assistance in XRD measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Caschera.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Caschera, D., Federici, F., Zane, D. et al. Gold nanoparticles modified GC electrodes: electrochemical behaviour dependence of different neurotransmitters and molecules of biological interest on the particles size and shape. J Nanopart Res 11, 1925–1936 (2009). https://doi.org/10.1007/s11051-008-9547-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-008-9547-0

Keywords

Navigation