Skip to main content

Advertisement

Log in

In situ processing and properties of nanostructured hydroxyapatite/alginate composite

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

A series of hydroxyapatite/alginate (HA/Alg) nanocomposites with alginate amounts varying from 10 to 40 wt% were prepared through in situ hybridization technique. The inorganic phase in the composites was carbonate-substituted HA with low crystallinity. The crystallinity of HA decreased with the increase of alginate content. HA crystallites were needle-like in shape with a typical size of 20 to 50 nm in length and 5 nm in width. FT-IR spectroscopy indicated that the chemical interaction occurred between the mineral phase and the polymer matrix. As compared to pure HA without alginate, the composites showed more homogeneous microstructures, where HA nanocrystals were well embedded in alginate matrix. Among all the samples, the composite containing 30 wt% alginate exhibited a highly ordered three-dimensional network, similar to natural bone’s microstructure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bigi A, Panzavolta S, Roveri N (1998) Hydroxyapatite-gelatin films: a structural and mechanical characterization. Biomaterials 19:739–744

    Article  PubMed  CAS  Google Scholar 

  • Bigi A, Boanini E, Panzavolta S, Roveri N, Rubini K (2002) Bonelike apatite growth on hydroxyapatite-gelatin sponges from simulated body fluid. J Biomed Mater Res 59:709–715

    Article  PubMed  CAS  Google Scholar 

  • Chang MC, Ko CC, Douglas WH (2003) Preparation of hydroxyapatite-gelatin nanocomposite. Biomaterials 24:2853–2862

    Article  PubMed  CAS  Google Scholar 

  • Du C, Cui FZ, Zhang W, Feng QL, Zhu XD, De Groot K (2000) Formation of calcium phosphate/collagen composites through mineralization of collagen matrix. J Biomed Mater Res 50:518–527

    Article  PubMed  CAS  Google Scholar 

  • Dujardin E, Mann S (2002) Bio-inspired materials chemistry. Adv Mater 14:775–788

    Article  CAS  Google Scholar 

  • Furuzono T, Taguchi T, Kishida A, Akashi M, Tamada Y (2000) Preparation and characterization of apatite deposited on silk fabric using an alternate soaking process. J Biomed Mater Res 50:344–352

    Article  PubMed  CAS  Google Scholar 

  • Gibson IR, Bonfield W (2002) Novel synthesis and characterization of an AB-type carbonate-substituted hydroxyapatite. J Biomed Mater Res 59:697–708

    Article  PubMed  CAS  Google Scholar 

  • Kikuchi M, Itoh S, Ichinose S, Shinomiya K, Tanaka J (2001) Self-organization mechanism in a bone-like hydroxyapatite/collagen nanocomposite synthesized in vitro and its biological reaction in vivo. Biomaterials 22:1705–1711

    Article  PubMed  CAS  Google Scholar 

  • Kong L, Gao Y, Cao W, Gong Y, Zhao N, Zhang X (2005) Preparation and characterization of nano-hydroxyapatite/chitosan composite scaffolds. J Biomed Mater Res 75A:275–282

    Article  CAS  Google Scholar 

  • Lin HR, Yeh YJ (2004) Porous alginate/hydroxyapatite composite scaffolds for bone tissue engineering: preparation, characterization, and in vitro studies. J Biomed Mater Res 71B:52–65

    Article  CAS  Google Scholar 

  • Liou SC, Chen SY, Liu DM (2005) Manipulation of nanoneedle and nanosphere apatite/poly(acrylic acid) nanocomposites. J Biomed Mater Res 73B:117–122

    Article  CAS  Google Scholar 

  • Mann S, Ozin GA (1996) Synthesis of inorganic materials with complex form. Nature 382:313–318

    Article  ADS  CAS  Google Scholar 

  • Maruyama M, Terayama K, Ito M, Takei T, Kitagawa E (1995) Hydroxyapatite clay for gap filling and adequate bone ingrowth. J Biomed Mater Res 29:329–336

    Article  PubMed  CAS  Google Scholar 

  • Murugan R, Ramakrishna S (2004) Bioresorbable composite bone paste using polysaccharide based nano hydroxyapatite. Biomaterials 25:3829–3835

    Article  PubMed  CAS  Google Scholar 

  • Rhee SH, Tanaka J (2002) Self-assembly phenomenon of hydroxyapatite nanocrystals on chondroitin sulfate. J Mater Sci Mater Med 13:597–600

    Article  PubMed  CAS  Google Scholar 

  • Ribeiro CC, Barrias CC, Barbosa MA (2004) Calcium phosphate-alginate microspheres as enzyme delivery matrices. Biomaterials 25:4363–4373

    Article  PubMed  CAS  Google Scholar 

  • Sailaja GS, Velayudhan S, Sunny MC, Sreenivasan K, Varma HK, Ramesh P (2003) Hydroxyapatite filled chitosan-polyacrylic acid polyelectrolyte complexes. J Mater Sci 38:3653–3662

    Article  CAS  Google Scholar 

  • Sivakumar M, Rao KP (2003) Preparation, characterization, and in vitro release of gentamicin from coralline hydroxyapatite-alginate composite microspheres. J Biomed Mater Res 65A:222–228

    Article  CAS  Google Scholar 

  • Sotome S, Uemura T, Kikuchi M, Chen J, Itoh S, Tanaka J (2004) Synthesis and in vivo evaluation of a novel hydroxyapatite/collagen-alginate as a bone filler and a drug delivery carrier of bone morphogenetic protein. Mater Sci Eng C24:341–347

    CAS  Google Scholar 

  • Stupp SI, Braun PV (1997) Molecular manipulation of microstructures: biomaterials, ceramics, and semiconductors. Science 277:1242–1248

    Article  PubMed  CAS  Google Scholar 

  • Tampieri A, Celotti G, Landi E (2005) From biomimetic apatites to biologically inspired composites. Anal Bioanal Chem 381:568–576

    Article  PubMed  CAS  Google Scholar 

  • Teng S, Shi J, Peng B, Chen L (2006) The effect of alginate addition on the structure and morphology of hydroxyapatite/gelatin nanocomposites. Compos Sci Technol 66:1532–1538

    Article  CAS  Google Scholar 

  • Wang M (2003) Developing bioactive composite materials for tissue replacement. Biomaterials 24:2133–2151

    Article  PubMed  CAS  Google Scholar 

  • Wang L, Nemoto R, Senna M (2002) Microstructure and chemical states of hydroxyapatite/silk fibroin nanocomposites synthesized via a wet-mechanochemical route. J Nanopart Res 4:535–540

    Article  CAS  Google Scholar 

  • Wang L, Nemoto R, Senna M (2004) Changes in microstructure and physico-chemical properties of hydroxyapatite-silk fibroin nanocomposite with varying silk fibroin content. J Eur Ceram Soc 24:2707–2715

    Article  CAS  Google Scholar 

  • Yamaguchi I, Tokuchi K, Fukuzaki H, Koyama Y, Takakuda K, Monma H, Tanaka J (2001) Preparation and microstructure analysis of chitosan/hydroxyapatite nanocomposites. J Biomed Mater Res 55:20–27

    Article  PubMed  CAS  Google Scholar 

  • Zhang SM, Cui FZ, Liao SS, Zhu Y, Han L (2003a) Synthesis and biocompatibility of porous nanohydroxyapatite/collagen/alginate composite. J Mater Sci Mater Med 14:641–645

    Article  PubMed  CAS  Google Scholar 

  • Zhang W, Liao SS, Cui FZ (2003b) Hierarchical self-assembly of nano-fibrils in mineralized collagen. Chem Mater 15:3221–3226

    Article  CAS  Google Scholar 

  • Zhao F, Yin Y, Lu WW, Leong JC, Zhang W, Zhang J, Zhang M, Yao K (2002) Preparation and histological evaluation of biomimetic three-dimensional hydroxyapatite/chitosan-gelatin network composite scaffolds. Biomaterials 23:3227–3234

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the national high technology research and development program of China (2006AA03Z358), and the Special Projects for Nanotechnology of Shanghai (0652 nm034).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, L., Li, Y. & Li, C. In situ processing and properties of nanostructured hydroxyapatite/alginate composite. J Nanopart Res 11, 691–699 (2009). https://doi.org/10.1007/s11051-008-9431-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-008-9431-y

Keywords

Navigation