Skip to main content
Log in

Production of cobalt and nickel particles by hydrogen reduction

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Cobalt and nickel nanoparticles were produced by hydrogen reduction reaction from cobalt or nickel chloride precursor vapour in nitrogen carrier gas. This aerosol phase method to produce nanoparticles is a scalable one-step process. Two different setups were introduced in particle production: a batch type reactor and a continuously operated reactor. Common feature in these setups was hydrogen mixing in a vertical flow reactor. The process was monitored on-line for particle mass concentration and for gas phase chemical reactions. Tapered element oscillating microbalance measured the particle mass concentration and Fourier transform infrared spectroscopy was used to monitor relevant gas phase species. The produced cobalt and nickel particles were characterised using transmission electron microscopy and x-ray diffraction. The produced cobalt and nickel particles were crystalline with cubic fcc structure. Twinning was often observed in cobalt particles while nickel particles were mostly single crystals. The cobalt particles formed typically long agglomerates. No significant neck growth between the primary particles was observed. The primary particle size for cobalt and nickel was below 100 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Auvinen A, Lehtinen K, Enriquez J et al (2000) Vaporisation rates of CsOH and CsI in conditions simulating a severe nuclear accident. J Aerosol Sci 31(9):1029–1043

    Article  CAS  Google Scholar 

  • Backman U, Tapper U, Jokiniemi JK (2004) An aerosol method to synthesize supported metal catalyst nanoparticles. Synthetic Met 142(1–3):169–176

    Article  CAS  Google Scholar 

  • Chaudhuri A, Wereley N, Kotha S et al (2005) Viscometric characterization of cobalt nanoparticle-based magnetorheological fluids using genetic algorithms. J Magn Magn Mater 293(1):206–214

    Article  CAS  Google Scholar 

  • Che S-L, Takada K, Takashima K et al (1999) Preparation of dense spherical Ni particles and hollow NiO particles by spray pyrolysis. J Mater Sci 34:1313–1318

    Article  CAS  Google Scholar 

  • EPA (1990) Automated equivalent method EQPM-1090-079. Federal Register 55 43406

    Google Scholar 

  • Friedlander S (2000) Smoke, Dust and Haze, 2nd edn. Oxford University Press, Oxford

    Google Scholar 

  • Grass RN, Stark WJ (2006) Gas phase synthesis of fcc-cobalt nanoparticles. J Mater Chem 16:1825–1830

    Article  CAS  Google Scholar 

  • Gustafson P, Norgren S, Grearson A et al (2005) Ultrafine crystalline hardmetals. Paper presented at European Powder Metallurgy Association’s EuroPM 2005 Conference and Exhibition, Prague

  • Hiroyuki K, Kazunor O (2004) Patent number JP 2004300480, 28 Oct 2004. Fujikura Ltd

  • Jang HD, Hwang DW, Kim DP et al (2003) Preparation of cobalt nanoparticles in the gas phase: kinetics of cobalt dichloride reduction. J Ind Eng Chem 9(4):407–411

    CAS  Google Scholar 

  • Jang HD, Hwang DW, Kim DP et al (2004) Preparation of cobalt nanoparticles by hydrogen reduction of cobalt chloride in the gas phase. Mater Res Bull 39:63–70

    Article  CAS  Google Scholar 

  • Jung, Saeng H, Kim, Jin D et al (2002) Patent number KR 2002029888, 20 April 2002. Korea Institute of Geoscience and Mineral Resources

  • Kauffeldt E, Kauffeldt T (2006) Thermodynamic-controlled gas phase process for the synthesis of nickel nanoparticles of adjustable size and morphology. J Nanopart Res 8:477–488

    Article  CAS  Google Scholar 

  • Koltypin Y, Katabi G, Cao X et al (1996) Sonochemical preparation of amorphous nickel. J Non-Cryst Solids 201:159–162

    Article  CAS  Google Scholar 

  • Kruis F, Fissan H, Peled A (1998) Synthesis of nanoparticles in the gas phase for electroci, optical and magnetic applications—a review. J Aerosol Sci 29(5):511–535

    Article  CAS  Google Scholar 

  • Lee JH, Nersisyan HH, Won CW (2004) The combustion synthesis of iron group metal fine powders. J Solid State Chem 177:251–256

    Article  CAS  Google Scholar 

  • Lehtinen K (1997) Theoretical studies on aerosol agglomeration processes. Dissertation. VTT Publications 304, Espoo

  • Li X, Chiba A, Takahashi S (1997) Preparation and magnetic properties of ultrafine particles of Fe-Ni alloys. J Magn Magn Mater 170:339–345

    Article  CAS  Google Scholar 

  • Nagashima K, Wada M, Kato A (1999) Preparation of fine Ni particles by the spray-pyrolysis technique and their film forming properties in the thick film method. J Mater Res 5:2828

    Article  Google Scholar 

  • Puntes VF, Parak WJ, Alivisatos AP (2002) Tuning the SP to FM transition of cobalt nanoparticles in view of biomedical applications. Eur Cells Mater 3(Suppl 2):128–131

    Google Scholar 

  • RWTÜV (1990) Performance testing of the Rupprecht and Patashnick TEOM Series 1400a Ambient Particle Monitor Report to R&P from RWTÜV Anlagentechnick GmbH, Essen, Germany

  • Sakabe Y (1997) Multilayer ceramic capacitors. Curr Opin Solid State Mater 2(5):584–587

    Article  CAS  Google Scholar 

  • Staupendahl G, Kurland H-D, Grabow J et al (2004) Pilot Plant for the Production of Ceramical Nanopowders by Laser Evaporation. In: Proceedings of PARTEC 2004—Int. Congr. for Particle Technology, Nuremberg, Germany, 16–18 March 2004

  • Stopic S, Nedeljkovic J, Rakocevic Z, Uskokovic (1999) Influence of additives on the properties of spherical nickel particles prepared by ultrasonic spray pyrolysis. J Mater Res 14(7):3059–3065

    Article  CAS  Google Scholar 

  • Suh Y et al (2005) Kinetic of gas phase reduction of nickel chloride in preparation for nickel nanoparticles. Mater Res Bull 40:2100–2109

    Article  CAS  Google Scholar 

  • Syukri, Ban T, Ohya Y, Takahashi Y (2003) A simple synthesis of metallic Ni and Ni-Co alloy fine powders from a mixed metal acetate precursor. Mater Chem Phys 78:645–649

    Article  CAS  Google Scholar 

  • Trzeciak TM, Cherbański R, Marijnissen JC et al (2004) Design of an improved laser aerosol reactor. In: Proceedings of PARTEC 2004—Int. Congr. for Particle Technology, Nuremberg, Germany, 16–18 March 2004

  • Tseng WJ, Chen C (2002) Dispersion and rheology of nickel nanoparticle inks. J Mater Sci 41:1213–1219

    Article  CAS  Google Scholar 

  • Wang J, Meng G (2001) Magnetorheological devices: principles, characteristics and applications in mechanical engineering. In: Proceedings of the Institution of Mechanical Engineers, Part L: J Mater Des Appl 215:3, 1 Jan 2001, pp 165–174, doi: 10.1243/1464420011545012

  • Xia B, Lenggoro IW, Okuyama K (2001) Preparation of Ni particles by ultrasonic spray pyrolysis of NiCl 2 ·6H 2 O precursor containing ammonia. J Mater Sci 36:1701–1705

    Article  CAS  Google Scholar 

  • Yasuhiro T, Naoki I (1998) Patent application number JP 10-125649, 8 May 1998. Sumitomo Metal Mining Co Ltd

Download references

Acknowledgements

The financial support from OM Group is acknowledged. The authors wish to thank Mr T. Klasila for x-ray fluorescence and XRD analysis. Mr K. Tormonen is acknowledged for FTIR measurements. The help of Mr R. Järvinen in constructing the experimental facility is appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Jokiniemi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Forsman, J., Tapper, U., Auvinen, A. et al. Production of cobalt and nickel particles by hydrogen reduction. J Nanopart Res 10, 745–759 (2008). https://doi.org/10.1007/s11051-007-9304-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-007-9304-9

Keywords

Navigation