Skip to main content
Log in

Preparation of AgBr Nanoparticles in Microemulsions Via Reaction of AgNO3 with CTAB Counterion

  • Original Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Nanoparticles of AgBr were prepared by precipitating AgBr in the water pools of microemulsions consisting of CTAB, n-butanol, isooctane and water. An aqueous solution of AgNO3 added to the microemulsion was the source of Ag+ ions. The formation of AgBr nanoparticles in microemulsions through direct reaction with the surfactant counterion is a novel approach aimed at decreasing the role of intermicellar nucleation on nanoparticle formation for rapid reactions. The availability of the surfactant counterion in every reverse micelle and the rapidity of the reaction with the counterion trigger nucleation within individual reverse micelles. The effect of the following variables on the particle size and size distribution was investigated: the surfactant and cosurfactant concentrations, moles of AgNO3 added, and water to surfactant mole ratio, R. High concentration of the surfactant or cosurfactant, or high water content of the microemulsion favored intermicellar nucleation and resulted in the formation of large particles with broad size distribution, while high amounts of AgNO3 favored nucleation within individual micelles and resulted in small nanoparticles with narrow size distribution. A blue shift in the UV absorption threshold corresponding to a decrease in the particle size was generally observed. Notably, the variation of the absorption peak size with the nanoparticle size was opposite to those reported by us in previous studies using different surfactants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bagwe R.P., Khilar K.C. (1997). Effects of intermicellar exchange rate and cations on the size of silver chloride nanoparticles formed in reverse micelles of AOT. Langmuir 13:6432–6432

    Article  CAS  Google Scholar 

  • Bagwe R.P., Khilar K.C. (2000). Effects of intermicellar exchange rate on the formation of silver nannoparticles in reverse microemulsions of AOT. Langmuir 16:905–910

    Article  CAS  Google Scholar 

  • Belloni J., Mostafavi M., Marignier J., Amblard J. (1991). Quantum size effects and photographic development. J. Imaging Sci. 35:68–74

    CAS  Google Scholar 

  • Bommarius A.S., Holzwarth J.F., Wang D.I., Hatton A.T. (1990). Coalescence and solubilizate exchange in a cationic four-component reversed micellar system. J Phys Chem. 94:7232–7339

    Article  CAS  Google Scholar 

  • Chen W., McLendon G., Marchetti A., Rehm J.M., Freedhoff M.I., Myers C. (1994). Size dependence of radiative rates in the indirect band gap material AgBr. J. Am. Chem. Soc. 116:1585–1586

    Article  CAS  Google Scholar 

  • Chew C.H., Gan L.M., Shah D.O. (1990). The effect of alkanes on the formatin of ultrafine silver bromide particles in ionic w/o microemulsions. J. Dispersion Sci. Technol. 11:593–609

    CAS  Google Scholar 

  • Correa N.M., Zhang H., Schelly Z.A. (2000). Preparation of AgBr quantum dots via electroporation of vesicles. J. Am. Chem. Soc. 122:6432–6434

    Article  CAS  Google Scholar 

  • Curri M.L., Agostiano A., Manna L., Monica M.D., Catalano M., Chiavarone L., Spagnolo V., Lugara M. (2000). Synthesis and characterization of CdS nanoclusters in a quaternary microemulsion: the role of the cosurfactant. J. Phys. Chem. B 104:8391–8397

    Article  CAS  Google Scholar 

  • Fang X., Yang C.J. (1999). An experimental study on the ralationship between the physical properties of CTAB/Hexanol/Water reverse micelles and ZrO2-Y2O3 nanoparticles prepared. Colloid Interface Sci. 212:242–251

    Article  CAS  Google Scholar 

  • Hirai T., Sato H., Komasawa I. (1993). Mechanism of formation of titanium dioxide ultrafine particles in reverse micelles by hydrolysis of titanium tetrabutoxide. Ind Eng Chem Res. 32:3014–3019

    Article  CAS  Google Scholar 

  • Hirai T., Sato H., Komasawa I. (1994). Mechanism of formation of CdS and ZnS ultrafine particles in reverse micelles. Ind. Eng. Chem. Res. 33:3262–3266

    Article  CAS  Google Scholar 

  • Husein M.M., Rodil E., Vera J.H. (2003). Formation of silver chloride nanoparticles in microemulsions by direct precipitaion with the surfactant counterion. Langmuir 19:8467–8474

    Article  CAS  Google Scholar 

  • Husein M.M., Rodil E., Vera J.H. (2004). Formation of silver bromide precipitate of nanoparticles in a single microemulsion utilizing the surfactant counterion. J. Colloid Interface Sci. 273:426–434

    Article  CAS  Google Scholar 

  • Husein M.M., Weber M., Vera J.H. (2001). Nucleophilic substitution sulfonation in emulsions: formation of sodium benzyl sulfonate. Can. J. Chem. Eng. 79:744–750

    Article  CAS  Google Scholar 

  • Johansson K., Marchetti A., McLendon G. (1992). Effect of size restriction on the static and dynamic emission behavior of silver bromide. J. Phys. Chem. 96:2873–2879

    Article  CAS  Google Scholar 

  • Kakuta N., Goto N., Ohkita H., Mizushima T. (1999). Silver bromide as a photocatalyst for hydrogen generatin from CH3OH/H2O solution. J. Phys. Chem. B 103:5917–5919

    Article  CAS  Google Scholar 

  • Monnoyer Ph., Fonseca A., Nagy J. (1995). Preparation of colloidal AgBr particles from microemulsions. Colloids Surf. A 100:233–243

    Article  CAS  Google Scholar 

  • Pillai V., Kumar P., Hou M., Ayyub P., Shah D. (1995). Preparation of nanoparticles of silver halides, Superconductors and magnetic materials using water-in-oil microemulsions as nano-reactors. Adv. Colloid Interface Sci. 55:241–269

    Article  CAS  Google Scholar 

  • Sugimoto T., Shiba F. (2000). Spontaneous nucleation of monodisperse silver halide particles from homogeneous gelatin solution 11: silver bromide. Colloids Surf. A 164:205–215

    Article  CAS  Google Scholar 

  • Tanaka T., Saijo H., Matsubara T. (1979). Optical absorption studies of the growth of microcrystals in nascent silver lodide hydrosols. J. Photogr. Sci. 27:60–65

    CAS  Google Scholar 

  • Towey T.F., Khan-Lodhi A., Robinson B.H. (1990). Kinetics and mechanism of formation of quantum-Sized cadmium sulphide particles in water-aerosol-OT-oil Microemulsions. J. Chem. Soc. Faraday Trans. 86:3757–3762

    Article  CAS  Google Scholar 

  • Vossmeyer T., Katsikas L., Giersig M., Popovic I., Diesner K., Chemseddine A. (1994). Characterization, size dependent oscillatior strength, temperature shift of the excitonic transition energy, and reversible absorbance shift. J. Phys. Chem. 98:7665–7673

    Article  CAS  Google Scholar 

  • Wang W., Weber M.E., Vera J.H. (1994). Effect of alcohol and salt on water uptake of reverse micelles formed by dioctyldimethylammonium chloride (DODMAC) in isooctane. J. Colloid Interface. Sci. 168:422–427

    Article  CAS  Google Scholar 

  • Weller H., Schmidt H.M., Koch U., Fojtik A., Baral S., Henglein A., Kunath W., Weiss K., Dieman E. (1986). Photochemistry of colloidal semiconductors onset of light absorption as a function of size of extremely small CdS particles. Chem. Phys. Lett. 124:557–560

    Article  CAS  Google Scholar 

  • Zhang H., Mostafavi M. (1997). UV-absorption observation of the silver bromide growth from a single molecule to the crystal in solution. J. Phys. Chem. B. 101:8443–8448

    Article  CAS  Google Scholar 

  • Zhang H., Schelly Z.A., Marynick D.S. (2000). Theoretical study of the molecular and electronic structures of neutral silver bromide clusters (AgBr)n, n = 1–9. J. Phys. Chem. A 104:6287–6294

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Natural Sciences and Engineering Research Council of Canada and the Ministerio de Ciencia y Tecnologia of Spain (project 2004/PC059) for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maen M. Husein.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Husein, M.M., Rodil, E. & Vera, J.H. Preparation of AgBr Nanoparticles in Microemulsions Via Reaction of AgNO3 with CTAB Counterion. J Nanopart Res 9, 787–796 (2007). https://doi.org/10.1007/s11051-006-9107-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-006-9107-4

Key words

Navigation