Skip to main content

Advertisement

Log in

Are Th17 Cells Playing a Role in Immunity to Dermatophytosis?

  • Published:
Mycopathologia Aims and scope Submit manuscript

Abstract

Despite their superficial localization in the skin, pathogenic dermatophytes can induce a complex but still misunderstood immune response in their hosts. The cell-mediated immunity (CMI) is correlated with both clinical recovery and protection against reinfection, and CD4+ T lymphocytes have been recognized as a crucial component of the immune defense against dermatophytes. Before the discovery of the Th17 pathway, CMI was considered to be only dependent of Th1 cells, and thus most studies on the immunology of dermatophytosis have focused on the Th1 pathway. Nevertheless, the fine comparative analysis of available scientific data on immunology of dermatophytosis in one hand and on the Th17 pathway mechanisms involved in opportunistic mucosal fungal infections in the other hand reveals that some key elements of the Th17 pathway can be activated by dermatophytes. Stimulation of the Th17 pathway could occur through the activation of some C-type lectin-like receptors and inflammasome in antigen-presenting cells. The Th17 cells could go back to the affected skin and by the production of signature cytokines could induce the effector mechanisms like the recruitment of polymorphonuclear neutrophils and the synthesis of antimicrobial peptides. In conclusion, besides the Th1 pathway, which is important to the immune response against dermatophytes, there are also growing evidences for the involvement of the Th17 pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Weitzman I, Summerbell RC. The dermatophytes. Clin Microbiol Rev. 1995;8:240–59.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. de Almeida SR. Immunology of dermatophytosis. Mycopathologia. 2008;166:277–83.

    Article  PubMed  Google Scholar 

  3. Brasch J. Pathogenesis of tinea. J Dtsch Dermatol Ges. 2010;8:780–6.

    PubMed  Google Scholar 

  4. Degreef H. Clinical forms of dermatophytosis (ringworm infection). Mycopathologia. 2008;166:257–65.

    Article  PubMed  Google Scholar 

  5. Vermout S, Tabart J, Baldo A, et al. Pathogenesis of dermatophytosis. Mycopathologia. 2008;166:267–75.

    Article  PubMed  Google Scholar 

  6. Svejgaard E. Humoral antibody responses in the immunopathogenesis of dermatophytosis. Acta Derm Venereol Suppl (Stockh). 1986;121:85–91.

    CAS  Google Scholar 

  7. Grappel SF, Blank F, Bishop CT. Circulating antibodies in dermatophytosis. Dermatologica. 1972;144:1–11.

    Article  CAS  PubMed  Google Scholar 

  8. Bagut ET, Cambier L, Heinen MP, et al. Development of an enzyme-linked immunosorbent assay for serodiagnosis of ringworm infection in cattle. Clin Vaccine Immunol. 2013;20:1150–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Calderon RA, Hay RJ. Cell-mediated immunity in experimental murine dermatophytosis. II. Adoptive transfer of immunity to dermatophyte infection by lymphoid cells from donors with acute or chronic infections. Immunology. 1984;53:465–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Zahur M, Afroz A, Rashid U, Khaliq S. Dermatomycoses: challenges and human immune responses. Curr Protein Pept Sci. 2014;15:437–44.

    Article  CAS  PubMed  Google Scholar 

  11. Schmid-Wendtner MH, Korting HC. Effective treatment for dermatophytoses of the foot: effect on restoration of depressed cell-mediated immunity. J Eur Acad Dermatol Venereol. 2007;21:1013–8.

    Article  PubMed  Google Scholar 

  12. Jones HE. Immune response and host resistance of humans to dermatophyte infection. J Am Acad Dermatol. 1993;28:S12–8.

    Article  CAS  PubMed  Google Scholar 

  13. Green F 3rd, Weber JK, Balish E. The thymus dependency of acquired resistance to Trichophyton mentagrophytes dermatophytosis in rats. J Invest Dermatol. 1983;81:31–8.

    Article  PubMed  Google Scholar 

  14. Calderon RA. Immunoregulation of dermatophytosis. Crit Rev Microbiol. 1989;16:339–68.

    Article  CAS  PubMed  Google Scholar 

  15. Dahl MV, Grando SA. Chronic dermatophytosis: what is special about Trichophyton rubrum? Adv Dermatol. 1994;9:97–109 (discussion 10–1).

    CAS  PubMed  Google Scholar 

  16. Koga T. Immune response in dermatophytosis. Nihon Ishinkin Gakkai Zasshi. 2003;44:273–5.

    Article  CAS  PubMed  Google Scholar 

  17. Mignon B, Tabart J, Baldo A, et al. Immunization and dermatophytes. Curr Opin Infect Dis. 2008;21:134–40.

    Article  PubMed  Google Scholar 

  18. Woodfolk JA, Platts-Mills TA. The immune response to dermatophytes. Res Immunol. 1998;149:436–45.

    Article  CAS  PubMed  Google Scholar 

  19. Criado PR, Oliveira CB, Dantas KC, et al. Superficial mycosis and the immune response elements. An Bras Dermatol. 2011;86:726–31.

    Article  PubMed  Google Scholar 

  20. Brasch J, Sterry W. Immunophenotypical characterization of inflammatory cellular infiltrates in tinea. Acta Derm Venereol. 1992;72:345–7.

    CAS  PubMed  Google Scholar 

  21. Szepes E, Magyarlaki M, Battyani Z, Schneider I. Immunohistological characterization of the cellular infiltrate in dermatophytosis. Mycoses. 1993;36:203–6.

    Article  CAS  PubMed  Google Scholar 

  22. Gupta AK, Taborda P, Taborda V, et al. Epidemiology and prevalence of onychomycosis in HIV-positive individuals. Int J Dermatol. 2000;39:746–53.

    Article  CAS  PubMed  Google Scholar 

  23. Smith KJ, Welsh M, Skelton H. Trichophyton rubrum showing deep dermal invasion directly from the epidermis in immunosuppressed patients. Br J Dermatol. 2001;145:344–8.

    Article  CAS  PubMed  Google Scholar 

  24. Luckheeram RV, Zhou R, Verma AD, Xia B. CD4(+)T cells: differentiation and functions. Clin Dev Immunol. 2012;2012:925135.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. O’Shea JJ, Paul WE. Mechanisms underlying lineage commitment and plasticity of helper CD4+ T cells. Science. 2010;327:1098–102.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Roy RM, Klein BS. Dendritic cells in antifungal immunity and vaccine design. Cell Host Microbe. 2012;11:436–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhu J, Paul WE. Peripheral CD4+ T-cell differentiation regulated by networks of cytokines and transcription factors. Immunol Rev. 2010;238:247–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhu J, Yamane H, Paul WE. Differentiation of effector CD4 T cell populations. Annu Rev Immunol. 2010;28:445–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Christie D, Zhu J. Transcriptional regulatory networks for CD4 T cell differentiation. Curr Top Microbiol Immunol. 2014;381:125–72.

    PubMed  PubMed Central  Google Scholar 

  30. Harrington LE, Hatton RD, Mangan PR, et al. Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat Immunol. 2005;6:1123–32.

    Article  CAS  PubMed  Google Scholar 

  31. Park H, Li Z, Yang XO, et al. A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat Immunol. 2005;6:1133–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Patel DD, Kuchroo VK. Th17 cell pathway in human immunity: lessons from genetics and therapeutic interventions. Immunity. 2015;43:1040–51.

    Article  CAS  PubMed  Google Scholar 

  33. Conti HR, Shen F, Nayyar N, et al. Th17 cells and IL-17 receptor signaling are essential for mucosal host defense against oral candidiasis. J Exp Med. 2009;206:299–311.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Deepe GS Jr, Gibbons RS. Interleukins 17 and 23 influence the host response to Histoplasma capsulatum. J Infect Dis. 2009;200:142–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Huang W, Na L, Fidel PL, Schwarzenberger P. Requirement of interleukin-17A for systemic anti-Candida albicans host defense in mice. J Infect Dis. 2004;190:624–31.

    Article  CAS  PubMed  Google Scholar 

  36. Zelante T, De Luca A, Bonifazi P, et al. IL-23 and the Th17 pathway promote inflammation and impair antifungal immune resistance. Eur J Immunol. 2007;37:2695–706.

    Article  CAS  PubMed  Google Scholar 

  37. Zelante T, Bozza S, De Luca A, et al. Th17 cells in the setting of Aspergillus infection and pathology. Med Mycol. 2009;47(Suppl 1):S162–9.

    Article  CAS  PubMed  Google Scholar 

  38. Rudner XL, Happel KI, Young EA, Shellito JE. Interleukin-23 (IL-23)-IL-17 cytokine axis in murine Pneumocystis carinii infection. Infect Immun. 2007;75:3055–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wozniak KL, Ravi S, Macias S, et al. Insights into the mechanisms of protective immunity against Cryptococcus neoformans infection using a mouse model of pulmonary cryptococcosis. PLoS ONE. 2009;4:e6854.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Zhang Y, Wang F, Tompkins KC, et al. Robust Th1 and Th17 immunity supports pulmonary clearance but cannot prevent systemic dissemination of highly virulent Cryptococcus neoformans H99. Am J Pathol. 2009;175:2489–500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Romani L. Immunity to fungal infections. Nat Rev Immunol. 2011;11:275–88.

    Article  CAS  PubMed  Google Scholar 

  42. Richardson JP, Moyes DL. Adaptive immune responses to Candida albicans infection. Virulence. 2015;6:327–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Koga T, Ishizaki H, Matsumoto T, Hori Y. Cytokine production of peripheral blood mononuclear cells in a dermatophytosis patient in response to stimulation with trichophytin. J Dermatol. 1993;20:441–3.

    Article  CAS  PubMed  Google Scholar 

  44. Koga T, Shimizu A, Nakayama J. Interferon-gamma production in peripheral lymphocytes of patients with tinea pedis: comparison of patients with and without tinea unguium. Med Mycol. 2001;39:87–90.

    CAS  PubMed  Google Scholar 

  45. Miyata T, Fujimura T, Masuzawa M, et al. Local expression of IFN-gamma mRNA in skin lesions of patients with dermatophytosis. J Dermatol Sci. 1996;13:167–71.

    Article  CAS  PubMed  Google Scholar 

  46. Koga T, Duan H, Urabe K, Furue M. Immunohistochemical detection of interferon-gamma-producing cells in dermatophytosis. Eur J Dermatol. 2001;11:105–7.

    CAS  PubMed  Google Scholar 

  47. Venturini J, Alvares AM, Camargo MR, et al. Dermatophyte-host relationship of a murine model of experimental invasive dermatophytosis. Microbes Infect. 2012;14:1144–51.

    Article  CAS  PubMed  Google Scholar 

  48. Neves PC, Rudersdorf RA, Galler R, et al. CD8+ gamma-delta TCR+ and CD4+ T cells produce IFN-gamma at 5-7 days after yellow fever vaccination in Indian rhesus macaques, before the induction of classical antigen-specific T cell responses. Vaccine. 2010;28:8183–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Cortez VS, Colonna M. Diversity and function of group 1 innate lymphoid cells. Immunol Lett. 2016;179:19–24.

    Article  CAS  PubMed  Google Scholar 

  50. Billiau A, Matthys P. Interferon-gamma: a historical perspective. Cytokine Growth Factor Rev. 2009;20:97–113.

    Article  CAS  PubMed  Google Scholar 

  51. Slunt JB, Taketomi EA, Woodfolk JA, et al. The immune response to Trichophyton tonsurans: distinct T cell cytokine profiles to a single protein among subjects with immediate and delayed hypersensitivity. J Immunol. 1996;157:5192–7.

    CAS  PubMed  Google Scholar 

  52. Lund A, Bratberg AM, Solbakk IT. In vitro release of interferon-gamma by trichophytin-stimulated whole blood cell cultures from ringworm-vaccinated and control calves experimentally inoculated with Trichophyton verrucosum. Vet Dermatol. 2001;12:75–80.

    Article  CAS  PubMed  Google Scholar 

  53. Baltazar Lde M, Santos PC, Paula TP, et al. IFN-gamma impairs Trichophyton rubrum proliferation in a murine model of dermatophytosis through the production of IL-1beta and reactive oxygen species. Med Mycol. 2014;52:293–302.

    Article  PubMed  CAS  Google Scholar 

  54. De Luca A, Zelante T, D’Angelo C, et al. IL-22 defines a novel immune pathway of antifungal resistance. Mucosal Immunol. 2010;3:361–73.

    Article  PubMed  CAS  Google Scholar 

  55. Korn T, Bettelli E, Oukka M, Kuchroo VK. IL-17 and Th17 cells. Annu Rev Immunol. 2009;27:485–517.

    Article  CAS  PubMed  Google Scholar 

  56. Nakamura T, Nishibu A, Yasoshima M, et al. Analysis of Trichophyton antigen-induced contact hypersensitivity in mouse. J Dermatol Sci. 2012;66:144–53.

    Article  CAS  PubMed  Google Scholar 

  57. Cambier L, Weatherspoon A, Defaweux V, et al. Assessment of the cutaneous immune response during Arthroderma benhamiae and A. vanbreuseghemii infection using an experimental mouse model. Br J Dermatol. 2014;170:625–33.

    Article  CAS  PubMed  Google Scholar 

  58. Grone A. Keratinocytes and cytokines. Vet Immunol Immunopathol. 2002;88:1–12.

    Article  CAS  PubMed  Google Scholar 

  59. Sakuragi Y, Sawada Y, Hara Y, et al. Increased circulating Th17 cell in a patient with tinea capitis caused by Microsporum canis. Allergol Int. 2016;65:215–6.

    Article  CAS  PubMed  Google Scholar 

  60. Brubaker SW, Bonham KS, Zanoni I, Kagan JC. Innate immune pattern recognition: a cell biological perspective. Annu Rev Immunol. 2015;33:257–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. LeibundGut-Landmann S, Gross O, Robinson MJ, et al. Syk- and CARD9-dependent coupling of innate immunity to the induction of T helper cells that produce interleukin 17. Nat Immunol. 2007;8:630–8.

    Article  CAS  PubMed  Google Scholar 

  62. Levitz SM. Th17 cells bounce off the fungal wall. Cell Host Microbe. 2009;5:311–3.

    Article  CAS  PubMed  Google Scholar 

  63. Plato A, Hardison SE, Brown GD. Pattern recognition receptors in antifungal immunity. Semin Immunopathol. 2015;37:97–106.

    Article  CAS  PubMed  Google Scholar 

  64. Gringhuis SI, Wevers BA, Kaptein TM, et al. Selective C-Rel activation via Malt1 controls anti-fungal T(H)-17 immunity by dectin-1 and dectin-2. PLoS Pathog. 2011;7:e1001259.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Schoenen H, Bodendorfer B, Hitchens K, et al. Cutting edge: mincle is essential for recognition and adjuvanticity of the mycobacterial cord factor and its synthetic analog trehalose-dibehenate. J Immunol. 2010;184:2756–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Robinson MJ, Osorio F, Rosas M, et al. Dectin-2 is a Syk-coupled pattern recognition receptor crucial for Th17 responses to fungal infection. J Exp Med. 2009;206:2037–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Saijo S, Ikeda S, Yamabe K, et al. Dectin-2 recognition of alpha-mannans and induction of Th17 cell differentiation is essential for host defense against Candida albicans. Immunity. 2010;32:681–91.

    Article  CAS  PubMed  Google Scholar 

  68. Saijo S, Iwakura Y. Dectin-1 and dectin-2 in innate immunity against fungi. Int Immunol. 2011;23:467–72.

    Article  CAS  PubMed  Google Scholar 

  69. Ifrim DC, Quintin J, Courjol F, et al. The role of Dectin-2 for host defense against disseminated candidiasis. J Cytokine Res. 2016;36:267–76.

    Article  CAS  Google Scholar 

  70. Mills KH, Dungan LS, Jones SA, Harris J. The role of inflammasome-derived IL-1 in driving IL-17 responses. J Leukoc Biol. 2013;93:489–97.

    Article  CAS  PubMed  Google Scholar 

  71. Glocker EO, Grimbacher B. Mucosal antifungal defence: IL-17 signaling takes centre stage. Immunol Cell Biol. 2011;89:823–5.

    Article  CAS  PubMed  Google Scholar 

  72. LeibundGut-Landmann S, Wuthrich M, Hohl TM. Immunity to fungi. Curr Opin Immunol. 2012;24:449–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. McGeachy MJ, McSorley SJ. Microbial-induced Th17: superhero or supervillain? J Immunol. 2012;189:3285–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. van de Veerdonk FL, Joosten LA, Netea MG. The interplay between inflammasome activation and antifungal host defense. Immunol Rev. 2015;265:172–80.

    Article  PubMed  CAS  Google Scholar 

  75. Vautier S, MacCallum DM, Brown GD. C-type lectin receptors and cytokines in fungal immunity. Cytokine. 2012;58:89–99.

    Article  CAS  PubMed  Google Scholar 

  76. Vautier S, Sousa Mda G, Brown GD. C-type lectins, fungi and Th17 responses. Cytokine Growth Factor Rev. 2010;21:405–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Bourgeois C, Kuchler K. Fungal pathogens—a sweet and sour treat for toll-like receptors. Front Cell Infect Microbiol. 2012;2:142.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Moreira AP, Cavassani KA, Ismailoglu UB, et al. The protective role of TLR6 in a mouse model of asthma is mediated by IL-23 and IL-17A. J Clin Invest. 2011;121:4420–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Haley K, Igyarto BZ, Ortner D, et al. Langerhans cells require MyD88-dependent signals for Candida albicans response but not for contact hypersensitivity or migration. J Immunol. 2012;188:4334–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Wuthrich M, Ersland K, Sullivan T, et al. Fungi subvert vaccine T cell priming at the respiratory mucosa by preventing chemokine-induced influx of inflammatory monocytes. Immunity. 2012;36:680–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Creagh EM, O’Neill LA. TLRs, NLRs and RLRs: a trinity of pathogen sensors that co-operate in innate immunity. Trends Immunol. 2006;27:352–7.

    Article  CAS  PubMed  Google Scholar 

  82. Hardison SE, Brown GD. C-type lectin receptors orchestrate antifungal immunity. Nat Immunol. 2012;13:817–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Dennehy KM, Ferwerda G, Faro-Trindade I, et al. Syk kinase is required for collaborative cytokine production induced through Dectin-1 and Toll-like receptors. Eur J Immunol. 2008;38:500–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Dennehy KM, Willment JA, Williams DL, Brown GD. Reciprocal regulation of IL-23 and IL-12 following co-activation of Dectin-1 and TLR signalling pathways. Eur J Immunol. 2009;39:1379–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. van de Veerdonk FL, Gresnigt MS, Kullberg BJ, et al. Th17 responses and host defense against microorganisms: an overview. BMB Rep. 2009;42:776–87.

    Article  PubMed  Google Scholar 

  86. Li Y, Chen J, Wan MJ, et al. The immune response of human keratinocytes to Trichophyton rubrum conidia is partially mediated by toll-like receptor-2, 4, dectin-1 and cytokines. Nan Fang Yi Ke Da Xue Xue Bao. 2011;31:678–81.

    PubMed  Google Scholar 

  87. Cambier LC, Heinen MP, Bagut ET, et al. Overexpression of TLR-2 and TLR-4 mRNA in feline polymorphonuclear neutrophils exposed to Microsporum canis. Vet Dermatol. 2016;27:78-e22.

    Article  Google Scholar 

  88. Brasch J, Morig A, Neumann B, Proksch E. Expression of antimicrobial peptides and toll-like receptors is increased in tinea and pityriasis versicolor. Mycoses. 2014;57:147–52.

    Article  CAS  PubMed  Google Scholar 

  89. Huang XZ, Liang PP, Ma H, et al. Effect of culture supernatant derived from Trichophyton rubrum grown in the nail medium on the innate immunity-related molecules of HaCaT. Chin Med J (Engl). 2015;128:3094–100.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Sato K, Yang XL, Yudate T, et al. Dectin-2 is a pattern recognition receptor for fungi that couples with the Fc receptor gamma chain to induce innate immune responses. J Biol Chem. 2006;281:38854–66.

    Article  CAS  PubMed  Google Scholar 

  91. Cambier L, Mathy A, Baldo A, et al. Feline polymorphonuclear neutrophils produce pro-inflammatory cytokines following exposure to Microsporum canis. Vet Microbiol. 2013;162:800–5.

    Article  CAS  PubMed  Google Scholar 

  92. Mao L, Zhang L, Li H, et al. Pathogenic fungus Microsporum canis activates the NLRP3 inflammasome. Infect Immun. 2014;82:882–92.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Yoshikawa FS, Ferreira LG, de Almeida SR. IL-1 signaling inhibits Trichophyton rubrum conidia development and modulates the IL-17 response in vivo. Virulence. 2015;6:449–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Yoshikawa FS, Yabe R, Iwakura Y, et al. Dectin-1 and Dectin-2 promote control of the fungal pathogen Trichophyton rubrum independently of IL-17 and adaptive immunity in experimental deep dermatophytosis. Innate Immun. 2016;22:316–24.

    Article  CAS  PubMed  Google Scholar 

  95. Gaffen SL. An overview of IL-17 function and signaling. Cytokine. 2008;43:402–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Onishi RM, Gaffen SL. Interleukin-17 and its target genes: mechanisms of interleukin-17 function in disease. Immunology. 2010;129:311–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Espinosa V, Rivera A. Cytokines and the regulation of fungus-specific CD4 T cell differentiation. Cytokine. 2012;58:100–6.

    Article  CAS  PubMed  Google Scholar 

  98. Kolls JK, Khader SA. The role of Th17 cytokines in primary mucosal immunity. Cytokine Growth Factor Rev. 2010;21:443–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Fujita H. The role of IL-22 and Th22 cells in human skin diseases. J Dermatol Sci. 2013;72:3–8.

    Article  CAS  PubMed  Google Scholar 

  100. Eyerich S, Eyerich K, Pennino D, et al. Th22 cells represent a distinct human T cell subset involved in epidermal immunity and remodeling. J Clin Invest. 2009;119:3573–85.

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Heddergott C, Bruns S, Nietzsche S, et al. The Arthroderma benhamiae hydrophobin HypA mediates hydrophobicity and influences recognition by human immune effector cells. Eukaryot Cell. 2012;11:673–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Hay RJ, Calderon RA, Collins MJ. Experimental dermatophytosis: the clinical and histopathologic features of a mouse model using Trichophyton quinckeanum (mouse favus). J Invest Dermatol. 1983;81:270–4.

    Article  CAS  PubMed  Google Scholar 

  103. Calderon RA, Hay RJ. Fungicidal activity of human neutrophils and monocytes on dermatophyte fungi, Trichophyton quinckeanum and Trichophyton rubrum. Immunology. 1987;61:289–95.

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Jensen JM, Pfeiffer S, Akaki T, et al. Barrier function, epidermal differentiation, and human beta-defensin 2 expression in tinea corporis. J Invest Dermatol. 2007;127:1720–7.

    Article  CAS  PubMed  Google Scholar 

  105. Fritz P, Beck-Jendroschek V, Brasch J. Inhibition of dermatophytes by the antimicrobial peptides human beta-defensin-2, ribonuclease 7 and psoriasin. Med Mycol. 2012;50:579–84.

    Article  CAS  PubMed  Google Scholar 

  106. Lopez-Garcia B, Lee PH, Gallo RL. Expression and potential function of cathelicidin antimicrobial peptides in dermatophytosis and tinea versicolor. J Antimicrob Chemother. 2006;57:877–82.

    Article  CAS  PubMed  Google Scholar 

  107. Kawai M, Yamazaki M, Tsuboi R, et al. Human beta-defensin-2, an antimicrobial peptide, is elevated in scales collected from tinea pedis patients. Int J Dermatol. 2006;45:1389–90.

    Article  PubMed  Google Scholar 

  108. Ferwerda B, Ferwerda G, Plantinga TS, et al. Human dectin-1 deficiency and mucocutaneous fungal infections. N Engl J Med. 2009;361:1760–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Glocker EO, Hennigs A, Nabavi M, et al. A homozygous CARD9 mutation in a family with susceptibility to fungal infections. N Engl J Med. 2009;361:1727–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Engelhardt KR, Grimbacher B. Mendelian traits causing susceptibility to mucocutaneous fungal infections in human subjects. J Allergy Clin Immunol. 2012;129:294–305.

    Article  CAS  PubMed  Google Scholar 

  111. Lanternier F, Pathan S, Vincent QB, et al. Deep dermatophytosis and inherited CARD9 deficiency. N Engl J Med. 2013;369:1704–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Lanternier F, Barbati E, Meinzer U, et al. Inherited CARD9 deficiency in 2 unrelated patients with invasive Exophiala infection. J Infect Dis. 2015;211:1241–50.

    PubMed  Google Scholar 

  113. Wang X, Wang W, Lin Z, et al. CARD9 mutations linked to subcutaneous phaeohyphomycosis and TH17 cell deficiencies. J Allergy Clin Immunol. 2014;133(905–8):e3.

    Google Scholar 

  114. Wang X, van de Veerdonk FL. When the fight against fungi goes wrong. PLoS Pathog. 2016;12:e1005400.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Alves de Medeiros AK, Lodewick E, Bogaert DJ, et al. Chronic and invasive fungal infections in a family with CARD9 deficiency. J Clin Immunol. 2016;36:204–9.

    Article  PubMed  Google Scholar 

  116. Drewniak A, Gazendam RP, Tool AT, et al. Invasive fungal infection and impaired neutrophil killing in human CARD9 deficiency. Blood. 2013;121:2385–92.

    Article  CAS  PubMed  Google Scholar 

  117. Grumach AS, de Queiroz-Telles F, Migaud M, et al. A homozygous CARD9 mutation in a Brazilian patient with deep dermatophytosis. J Clin Immunol. 2015;35:486–90.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernard Mignon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heinen, MP., Cambier, L., Fievez, L. et al. Are Th17 Cells Playing a Role in Immunity to Dermatophytosis?. Mycopathologia 182, 251–261 (2017). https://doi.org/10.1007/s11046-016-0093-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11046-016-0093-5

Keywords

Navigation