Skip to main content
Log in

Diagnosis of Dermatophytosis Using Molecular Biology

  • Published:
Mycopathologia Aims and scope Submit manuscript

Abstract

Identification of fungi in dermatological samples using PCR is reliable and provides significantly improved results in comparison with cultures. It is possible to identify the infectious agent when negative results are obtained from cultures. In addition, identification of the infectious agent can be obtained in 1 day. Conventional and real-time PCR methods used for direct fungus identification in collected samples vary by DNA extraction methods, targeted DNA and primers, and the way of analysing the PCR products. The choice of a unique method in a laboratory is complicated because the results expected from skin and hair sample analysis are different from those expected in cases of onychomycosis. In skin and hair samples, one dermatophyte among about a dozen possible species has to be identified. In onychomycosis, the infectious agents are mainly Trichophyton rubrum and, to a lesser extent, Trichophyton interdigitale, but also moulds insensitive to oral treatments used for dermatophytes, which renders fungal identification mandatory. The benefits obtained with the use of PCR methods for routine analysis of dermatological samples have to be put in balance with the relative importance of getting a result in a short time, the price of molecular biology reagents and equipment, and especially the time spent conducting laboratory manipulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. English MP. Nails and fungi. Br J Dermatol. 1976;94:697–701.

    Article  CAS  PubMed  Google Scholar 

  2. Gräser Y, El Fari M, Vilgalys R, et al. Phylogeny and taxonomy of the family Arthrodermataceae (dermatophytes) using sequence analysis of the ribosomal ITS region. Med Mycol. 1999;37:105–14.

    Article  PubMed  Google Scholar 

  3. Gräser Y, Kuijpers AF, Presber W, De Hoog GS. Molecular taxonomy of Trichophyton mentagrophytes and T. tonsurans. Med Mycol. 1999;37:315–30.

    Article  PubMed  Google Scholar 

  4. Frealle E, Rodrigue M, Gantois N, et al. Phylogenetic analysis of Trichophyton mentagrophytes human and animal isolates based on MnSOD and ITS sequence comparison. Microbiology. 2007;153:3466–77.

    Article  CAS  PubMed  Google Scholar 

  5. Symoens F, Jousson O, Planard C, et al. Molecular analysis and mating behaviour of the Trichophyton mentagrophytes species complex. Int J Med Microbiol. 2011;301:260–6.

    Article  CAS  PubMed  Google Scholar 

  6. Symoens F, Jousson O, Packeu A, et al. The dermatophyte species Arthroderma benhamiae: intraspecies variability and mating behavior. J Med Microbiol. 2013;62:377–85.

    Article  CAS  PubMed  Google Scholar 

  7. Ninet B, Jan I, Bontems O, Léchenne B, et al. Identification of dermatophyte species by 28S ribosomal DNA sequencing with a commercial kit. J Clin Microbiol. 2003;41:826–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Verrier J, Krähenbühl L, Bontems O, et al. Dermatophyte identification in skin and hair samples using a simple and reliable nested polymerase chain reaction assay. Br J Dermatol. 2013;168:295–301.

    Article  CAS  PubMed  Google Scholar 

  9. Kanbe T, Suzuki Y, Kamiya A, et al. Species-identification of dermatophytes Trichophyton, Microsporum and Epidermophyton by PCR and PCR–RFLP targeting of the DNA topoisomerase II genes. J Dermatol Sci. 2003;33:41–54.

    Article  CAS  PubMed  Google Scholar 

  10. Hirai A, Kano R, Nakamura Y, et al. Molecular taxonomy of dermatophytes and related fungi by chitin synthase 1 (CHS1) gene sequences. Antonie Van Leeuwenhoek. 2003;83:11–20.

    Article  CAS  PubMed  Google Scholar 

  11. Kano R, Hirai A, Muramatsu M, et al. Direct detection of dermatophytes in skin samples based on sequences of the chitin synthase 1 (CHS1) gene. J Vet Med Sci. 2003;65:267–70.

    Article  CAS  PubMed  Google Scholar 

  12. Beguin H, Pyck N, Hendrickx M, et al. The taxonomic status of Trichophyton quinckeanum and T. interdigitale revisited: a multigene phylogenetic approach. Med Mycol. 2012;50:871–82.

    Article  CAS  PubMed  Google Scholar 

  13. Chollet A, Cattin V, Fratti M, et al. Which fungus originally was Trichophyton mentagrophytes? Historical review and illustration by a clinical case. Mycopathologia. 2015;180:1–5.

    Article  PubMed  Google Scholar 

  14. Nenoff P, Erhard M, Simon JC, et al. MALDI–TOF mass spectrometry—a rapid method for the identification of dermatophyte species. Med Mycol. 2013;51:17–24.

    Article  CAS  PubMed  Google Scholar 

  15. De Respinis S, Tonolla M, Pranghofer S, et al. Identification of dermatophytes by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Med Mycol. 2013;51:514–21.

    Article  PubMed  Google Scholar 

  16. De Respinis S, Monnin V, Girard V, et al. Matrix-assisted laser desorption ionization–time of flight (MALDI–TOF) mass spectrometry using the Vitek MS system for rapid and accurate identification of dermatophytes on solid cultures. J Clin Microbiol. 2014;52:4286–92.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Ebihara M, Makimura K, Sato K, et al. Molecular detection of dermatophytes and nondermatophytes in onychomycosis by nested polymerase chain reaction based on 28S ribosomal RNA gene sequences. Br J Dermatol. 2009;161:1038–44.

    Article  CAS  PubMed  Google Scholar 

  18. Bontems O, Hauser PM, Monod M. Evaluation of a polymerase chain reaction-restriction fragment length polymorphism assay for dermatophyte and nondermatophyte identification in onychomycosis. Br J Dermatol. 2009;161:791–6.

    Article  CAS  PubMed  Google Scholar 

  19. Verrier J, Pronina M, Peter C, et al. Identification of infectious agents in onychomycoses by PCR–terminal restriction fragment length polymorphism. J Clin Microbiol. 2012;50:553–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Li XF, Tian W, Wang H, et al. Direct detection and differentiation of causative fungi of onychomycosis by multiplex polymerase chain reaction-based assay. Eur J Dermatol. 2011;21:37–42.

    PubMed  Google Scholar 

  21. Kardjeva V, Summerbell R, Kantardjiev T, et al. Forty-eight-hour diagnosis of onychomycosis with subtyping of Trichophyton rubrum strains. J Clin Microbiol. 2006;44:1419–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Gupta AK, Zaman M, Singh J. Fast and sensitive detection of Trichophyton rubrum DNA from the nail samples of patients with onychomycosis by a double-round polymerase chain reaction-based assay. Br J Dermatol. 2007;157:698–703.

    Article  CAS  PubMed  Google Scholar 

  23. Uchida T, Makimura K, Ishihara K, et al. Comparative study of direct polymerase chain reaction, microscopic examination and culture-based morphological methods for detection and identification of dermatophytes in nail and skin samples. J Dermatol. 2009;36:202–8.

    Article  CAS  PubMed  Google Scholar 

  24. Bergmans AM, van der Ent M, Klaassen A, et al. Evaluation of a single-tube real-time PCR for detection and identification of 11 dermatophyte species in clinical material. Clin Microbiol Infect. 2010;16:704–10.

    Article  CAS  PubMed  Google Scholar 

  25. Sato T, Takayanagi A, Nagao K, et al. Simple PCR-based DNA microarray system to identify human pathogenic fungi in skin. J Clin Microbiol. 2010;48:2357–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wisselink GJ, van Zanten E, Kooistra-Smid AM. Trapped in keratin; a comparison of dermatophyte detection in nail, skin and hair samples directly from clinical samples using culture and real-time PCR. J Microbiol Methods. 2011;85:62–6.

    Article  CAS  PubMed  Google Scholar 

  27. Beifuss B, Bezold G, Gottlöber P, et al. Direct detection of five common dermatophyte species in clinical samples using a rapid and sensitive 24-h PCR–ELISA technique open to protocol transfer. Mycoses. 2011;54:137–45.

    Article  CAS  PubMed  Google Scholar 

  28. Paugam A, L’Ollivier C, Viguié C, et al. Comparison of real-time PCR with conventional methods to detect dermatophytes in samples from patients with suspected dermatophytosis. J Microbiol Methods. 2013;95:218–22.

    Article  CAS  PubMed  Google Scholar 

  29. Elavarashi E, Kindo AJ, Kalyani J. Optimization of PCR–RFLP directly from the skin and nails in cases of dermatophytosis, targeting the ITS and the 18S ribosomal DNA regions. J Clin Diagn Res. 2013;7:646–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Dhib I, Fathallah A, Yaacoub A, et al. Multiplex PCR assay for the detection of common dermatophyte nail infections. Mycoses. 2014;57:19–26.

    Article  CAS  PubMed  Google Scholar 

  31. Miyajima Y, Satoh K, Uchida T, et al. Rapid real-time diagnostic PCR for Trichophyton rubrum and Trichophyton mentagrophytes in patients with tinea unguium and tinea pedis using specific fluorescent probes. J Dermatol Sci. 2013;69:229–35.

    Article  CAS  PubMed  Google Scholar 

  32. Alexander CL, Shankland GS, Carman W, Williams C. Introduction of a dermatophyte polymerase chain reaction assay to the diagnostic mycology service in Scotland. Br J Dermatol. 2011;164:966–72.

    Article  CAS  PubMed  Google Scholar 

  33. Bergman A, Heimer D, Kondori N, Enroth H. Fast and specific dermatophyte detection by automated DNA extraction and real-time PCR. Clin Microbiol Infect. 2013;19:E205–11.

    Article  CAS  PubMed  Google Scholar 

  34. Pankewitz F, Nenoff P, Uhrlaß S, et al. Development of a novel polymerase chain reaction-enzyme-linked immunosorbent assay for the diagnosis of Trichophyton rubrum onychomycosis. Br J Dermatol. 2013;168:1236–42.

    Article  CAS  PubMed  Google Scholar 

  35. Mehlig L, Garve C, Ritschel A, et al. Clinical evaluation of a novel commercial multiplex-based PCR diagnostic test for differential diagnosis of dermatomycoses. Mycoses. 2014;57:27–34.

    Article  CAS  PubMed  Google Scholar 

  36. Ohst T, Kupsch C, Gräser Y. Detection of common dermatophytes in clinical specimens using a simple quantitative real-time TaqMan PCR assay. Br J Dermatol. 2016;174:902–9.

  37. Monod M, Bontems O, Zaugg C, et al. Fast and reliable PCR/sequencing/RFLP assay for identification of fungi in onychomycoses. J Med Microbiol. 2006;55:1211–6.

    Article  CAS  PubMed  Google Scholar 

  38. Machouart-Dubach M, Lacroix C, Feuilhade De Chauvin M, et al. Rapid discrimination among dermatophytes, Scytalidium spp. and other fungi with a PCR–restriction fragment length polymorphism ribotyping method. J Clin Microbiol. 2001;39:685–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Arabatzis M, Xylouri E, Frangiadaki I, et al. Rapid detection of Arthroderma vanbreuseghemii in rabbit skin specimens by PCR–RFLP. Vet Dermatol. 2006;17:322–6.

    Article  PubMed  Google Scholar 

  40. Brillowska-Dabrowska A, Saunte DM, Arendrup MC. Five-hour diagnosis of dermatophyte nail infections with specific detection of Trichophyton rubrum. J Clin Microbiol. 2007;45:1200–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Brillowska-Dabrowska A, Nielsen SS, Nielsen HV, Arendrup MC. Optimized 5-hour multiplex PCR test for the detection of tinea unguium: performance in a routine PCR laboratory. Med Mycol. 2010;48:828–31.

    Article  CAS  PubMed  Google Scholar 

  42. Brillowska-Dabrowska A, Michałek E, Saunte DM, et al. PCR test for Microsporum canis identification. Med Mycol. 2013;51:576–9.

    Article  CAS  PubMed  Google Scholar 

  43. Brasch J, Beck-Jendroschek V, Gläser R. Fast and sensitive detection of Trichophyton rubrum in superficial tinea and onychomycosis by use of a direct polymerase chain reaction assay. Mycoses. 2011;54:e313–7.

    Article  CAS  PubMed  Google Scholar 

  44. Yang G, Zhang M, Li W, An L. Direct species identification of common pathogenic dermatophyte fungi in clinical specimens by semi-nested PCR and restriction fragment length polymorphism. Mycopathologia. 2008;166:203–8.

    Article  CAS  PubMed  Google Scholar 

  45. Verrier J, Bontems O, Baudraz-Rosselet F, Monod M. Oral terbinafine and itraconazole treatments against dermatophytes appear not to favor the establishment of Fusarium spp. in nail. Dermatology. 2014;228:225–32.

    Article  CAS  PubMed  Google Scholar 

  46. Menotti J, Machouart M, Benderdouche M, et al. Polymerase chain reaction for diagnosis of dermatophyte and Scytalidium spp. onychomycosis. Br J Dermatol. 2004;151:518–9.

    Article  CAS  PubMed  Google Scholar 

  47. Derakshani M, Lukow T, Liesack W. Novel bacterial lineages at the (sub)division level as detected signature nucleotide-targeted recovery of 16S rRNA genes from bulk soil and rice roots of flooded rice microcosms. Appl Environ Microbiol. 2001;67:623–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Eschenhagen M, Schuppler M, Röske I. Molecular characterization of the microbial community structure in two activated sludge systems for the advanced treatment of domestic effluents. Water Res. 2003;37:3224–32.

    Article  CAS  PubMed  Google Scholar 

  49. Lee HK, Kim HR, Mengoni A, Lee DH. Modified T-RFLP methods for taxonomic interpretation of T-RF. J Microbiol Biotechnol. 2008;18:624–30.

    PubMed  Google Scholar 

  50. Vinten AJ, Artz RR, Thomas N, et al. Comparison of microbial community assays for the assessment of stream biofilm ecology. J Microbiol Methods. 2011;85:190–8.

    Article  CAS  PubMed  Google Scholar 

  51. Sakamoto M, Takeuchi Y, Umeda M, et al. Application of terminal RFLP analysis to characterize oral bacteria flora in saliva of healthy subjects and patients with periodontitis. J Med Microbiol. 2003;52:79–89.

    Article  CAS  PubMed  Google Scholar 

  52. Savin C, Huck S, Rolland C, et al. Multicenter evaluation of a commercial PCR–enzyme-linked immunosorbent assay diagnostic kit (Onychodiag) for diagnosis of dermatophytic onychomycosis. J Clin Microbiol. 2007;45:1205–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Baudraz-Rosselet F, Ruffieux C, Lurati M, et al. Onychomycosis insensitive to systemic terbinafine and azole treatments reveals non-dermatophyte moulds as infectious agents. Dermatology. 2010;220:164–8.

    Article  CAS  PubMed  Google Scholar 

  54. Lurati M, Baudraz-Rosselet F, Vernez M, et al. Efficacious treatment of non-dermatophyte mould onychomycosis with topical amphotericin B. Dermatology. 2011;223:289–92.

    Article  CAS  PubMed  Google Scholar 

  55. Gilaberte Y, Aspiroz C, Martes MP, et al. Treatment of refractory fingernail onychomycosis caused by nondermatophyte molds with methylaminolevulinate photodynamic therapy. J Am Acad Dermatol. 2011;65:669–71.

    Article  PubMed  Google Scholar 

  56. Baudraz-Rosselet F, Monod M, Jaccoud S, Frenk E. Efficacy of terbinafine treatment of tinea capitis in children varies according to the dermatophyte species. Br J Dermatol. 1996;135:1011–2.

    Article  CAS  PubMed  Google Scholar 

  57. Mock M, Monod M, Baudraz-Rosselet F, Panizzon RG. Tinea capitis dermatophytes: susceptibility to antifungal drugs tested in vitro and in vivo. Dermatology. 1998;197:361–7.

    Article  CAS  PubMed  Google Scholar 

  58. Sakka N, Shemer A, Barzilai A, et al. Occult tinea pedis in an Israeli population and predisposing factors for the acquisition of the disease. Int J Dermatol. 2015;54:146–9.

    Article  PubMed  Google Scholar 

  59. Holländer H, Keilig W, Bauer J, Rothemund E. A reliable fluorescent stain for fungi in tissue sections and clinical specimens. Mycopathologia. 1984;88:131–4.

    Article  PubMed  Google Scholar 

  60. Monheit JE, Cowan DF, Moore DG. Rapid detection of fungi in tissues using calcofluor white and fluorescence microscopy. Arch Pathol Lab Med. 1984;108:616–8.

    CAS  PubMed  Google Scholar 

  61. Gip L, Abelin J. Differential staining of fungi in clinical specimens using fluorescent whitening agent (Blankophor). Mykosen. 1987;30:21–4.

    Article  CAS  PubMed  Google Scholar 

  62. Monod M, Baudraz-Rosselet F, Ramelet AA, Frenk E. Direct mycological examination in dermatology: a comparison of different methods. Dermatologica. 1989;179:183–6.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel Monod.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verrier, J., Monod, M. Diagnosis of Dermatophytosis Using Molecular Biology. Mycopathologia 182, 193–202 (2017). https://doi.org/10.1007/s11046-016-0038-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11046-016-0038-z

Keywords

Navigation