Skip to main content

Advertisement

Log in

Comparison of Vitek Matrix-assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry Versus Conventional Methods in Candida Identification

  • Published:
Mycopathologia Aims and scope Submit manuscript

Abstract

Candida species are generally identified by conventional methods such as germ tube or morphological appearance on corn meal agar, biochemical methods using API kits and molecular biological methods. Alternative to these methods, rapid and accurate identification methods of microorganisms called matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDİ–TOF MS) has recently been described. In this study, Candida identification results by API Candida kit, API 20C AUX kit and identifications on corn meal agar (CMA) are compared with the results obtained on Vitek–MS. All results were confirmed by sequencing internal transcribed spacer (ITS) regions of rDNA. Totally, 97 Candida strains were identified by germ tube test, CMA, API and Vitek–MS. Vitek–MS results were compatible with 74.2 % of API 20C AUX and 81.4 % of CMA results. The difference between the results of API Candida and API 20C AUX was detected. The ratio of discrepancy between Vitek–MS and API 20C AUX was 25.8 %. Candida species mostly identified as C. famata or C. tropicalis by and not compatible with API kits were identified as C. albicans by Vitek–MS. Sixteen Candida species having discrepant results with Vitek–MS, API or CMA were randomly chosen, and ITS sequence analysis was performed. The results of sequencing were compatible 56.2 % with API 20C AUX, 50 % with CMA and 93.7 % with Vitek–MS. When compared with conventional identification methods, MS results are more reliable and rapid for Candida identification. MS system may be used as routine identification method in clinical microbiology laboratories.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pfaller MA, Diekema DJ. Epidemiology of invasive candidiasis: a persistent public health problem. Clin Microbiol Rev. 2007;20:133–63.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Freydiere AM, Guinet R, Boiron P. Yeast identification in the clinical microbiology laboratory: phenotypical methods. Med Mycol. 2001;39(1):9–33.

    Article  CAS  PubMed  Google Scholar 

  3. Verweij PE, Breuker IM, Rijs AJ, Meis JF. Comparative study of seven commercial yeast identification systems. J Clin Pathol. 1999;52(4):271–3.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Chen YC, Eisner JD, Kattar MM, Rassoulian-Barrett SL, LaFe K, Yarfitz SL, et al. Identification of medically important yeasts using PCR-based detection of DNA sequence polymorphisms in the internal transcribed spacer 2 region of the rRNA genes. J Clin Microbiol. 2000;38:2302–10.

    PubMed Central  CAS  PubMed  Google Scholar 

  5. Cornet M, Sendid B, Fradin C, Gaillardin C, Poulain D, Nguyen HV. Molecular identification of closely related Candida species using two ribosomal intergenic spacer fingerprinting methods. J Mol Diagn. 2011;13:12–22.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Leaw SN, Chang HC, Sun HF, Barton R, Bouchara JP, Chang TC. Identification of medically important yeasts species by sequence analysis of the internal transcribed spacer regions. J Clin Microbiol. 2006;44:693–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Fenselau C, Demirev PA. Characterisation of intact microorganisms by MALDI mass spectrometry. Mass Spectrom Rev. 2001;20:157–71.

    Article  CAS  PubMed  Google Scholar 

  8. Amiri-Eliasi B, Fenselau C. Characterisation of protein biomarkers desorbed by MALDI form whole fungal cells. Anal Chem. 2001;73:5228–31.

    Article  CAS  PubMed  Google Scholar 

  9. Marinach-Patrice C, Fekkar A, Atanasova R, Gomes J, Djamdjian L, Brossas JY, et al. Rapid species diagnosis for invasive candidiasis using mass spectrometry. PLoS ONE. 2010;25–5(1):e8862. doi:10.1371/journal.pone.0008862.

    Article  Google Scholar 

  10. Iriart X, Lavergne RA, Fillaux J, Valentin A, Magnaval JF, Berry A, et al. Routine identification of medical fungi by the new Vitek MS matrix-assisted laser desorption ionization-time of flight system with a new time-effective strategy. J Clin Microbiol. 2012;50(6):2107–10.

    Article  PubMed Central  PubMed  Google Scholar 

  11. Marinach-Patrice C, Lethuillier A, Marly A, Brossas JY, Gené J, Symoens F, et al. Use of mass spectrometry to identify clinical Fusarium isolates. Clin Microbiol Infect. 2009;15(7):634–42.

    Article  CAS  PubMed  Google Scholar 

  12. White T, Burns T, Lee S, Taylor T. Amplification and direct sequencing of fungal ribosomal rRNA genes for phylogenetics. In: Innis MA, Gelfland DH, Sninsky TJ, editors. PCR protocols. San Diego: Academic Press; 1990. pp. 315–322.

    Google Scholar 

  13. Altschul Stephen F, Madden Thomas L, Schäffer Alejandro A, et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997;25:3389–402.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Castanheira M, Woosley LN, Diekema DJ, Jones RN, Pfaller MA. Candida guilliermondii and other species of candida misidentified as Candida famata: assessment by vitek 2, DNA sequencing analysis, and matrix-assisted laser desorption ionization-time of flight mass spectrometry in two global antifungal surveillance programs. J Clin Microbiol. 2013;51(1):117–24.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Verweig PE, Breuber IM, Rijs AJMM, Meis JFGM. Comparative study of seven commercial yeast identification system. J Clin Pathol. 1999;52:271–3.

    Article  Google Scholar 

  16. Seyfarth F, Wiegand C, Erhard M, Gräser Y, Elsner P, Hipler UC. Identification of yeast isolated from dermatological patients by MALDI–TOF mass spectrometry. Mycoses. 2012;55(3):276–80.

    Article  CAS  PubMed  Google Scholar 

  17. Freydiere AM, Guinet R, Boiron P. Yeast identification in the clinical microbiology laboratory: phenotypical methods. Med Mycol. 2001;39(1):9–33.

    Article  CAS  PubMed  Google Scholar 

  18. Marklein G, Josten M, Klanke U, Müller E, Horré R, Maier T, et al. Matrix-assisted laser desorption ionization-time of flight mass spectrometry for fast and reliable identification of clinical yeast isolates. J Clin Microbiol. 2009;47(9):2912–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Bader O, Weig M, Taverne-Ghadwal L, Lugert R, Gross U, Kuhns M. Improved clinical laboratory identification of human pathogenic yeasts by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Clin Microbiol Infect. 2011;17(9):1359–65.

    Article  CAS  PubMed  Google Scholar 

  20. Stevenson LG, Drake SK, Shea YR, Zelazny AM, Murray PR. Evaluation of matrix-assisted laser desorption ionization-time of flight mass spectrometry for identification of clinically important yeast species. J Clin Microbiol. 2010;48(10):3482–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. van Veen SQ, Claas EC, Kuijper EJ. High-throughput identification of bacteria and yeast by matrix-assisted laser desorption ionization-time of flight mass spectrometry in conventional medical microbiology laboratories. J Clin Microbiol. 2010;48(3):900–7.

    Article  PubMed Central  PubMed  Google Scholar 

  22. Lacroix C, Gicquel A, Sendid B, Meyer J, Accoceberry I, François N, et al. Evaluation of two matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI–TOF MS) systems for the identification of Candida species. Clin Microbiol Infect. 2014;20(2):153–8. doi:10.1111/1469-0691.12210.

    Article  CAS  PubMed  Google Scholar 

  23. Martínez-Lamas L. Pérez del Molino ML, Pardo F, Varela E, Regueiro BJ. Matrix-assisted laser desorption ionization time-of-flight (MALDI–TOF) mass spectrometry vs conventional methods in the identification of Candida non-albicans. Enferm Infecc Microbiol Clin. 2011;29(8):568–72.

    Article  PubMed  Google Scholar 

  24. Jamal W, Saleem R, Rotimi VO. Rapid identification of pathogens directly from blood culture bottles by Bruker matrix-assisted laser desorption laser ionization-time of flight mass spectrometry versus routine methods. Diagn Microbiol Infect Dis. 2013;76(4):404–8. doi:10.1016/j.diagmicrobio.2013.04.013.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank ION-TEK, a commercial agency (Istanbul, Turkey) for their assistance with ITS sequence analysis. Many thanks to Dr. Murat Sayan for his evaluations of electropherograms.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sema Aşkın Keçeli.

Ethics declarations

Conflict of interest

There is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Keçeli, S.A., Dündar, D. & Tamer, G.S. Comparison of Vitek Matrix-assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry Versus Conventional Methods in Candida Identification. Mycopathologia 181, 67–73 (2016). https://doi.org/10.1007/s11046-015-9944-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11046-015-9944-8

Keywords

Navigation