Skip to main content

Advertisement

Log in

In Vitro Susceptibility of Environmental Isolates of Exophiala dermatitidis to Five Antifungal Drugs

  • Published:
Mycopathologia Aims and scope Submit manuscript

Abstract

Several dematiaceous fungi frequently isolated from nature are involved in cases of superficial lesions to lethal cerebral infections. Antifungal susceptibility data on environmental and clinical isolates are still sparse despite the advances in testing methods. The objective of this study was to examine the activities of 5-flucytosine, amphotericin B, itraconazole, voriconazole and terbinafine against environmental isolates of Exophiala strains by minimum inhibition concentration (MIC) determination. The strains were obtained from hydrocarbon-contaminated soil, ant cuticle and fungal pellets from the infrabuccal pocket of attine gynes. Broth microdilution assay using M38-A2 reference methodology for the five antifungal drugs and DNA sequencing for fungal identification were applied. Terbinafine was the most active drug against the tested strains. It was observed that amphotericin B was less effective, notably against Exophiala spinifera, also studied. High MICs of 5-flucytosine against Exophiala dermatitidis occurred. This finding highlights the relevance of studies on the antifungal resistance of these potential opportunistic species. Our results also contribute to a future improvement of the standard methods to access the drug efficacy currently applied to black fungi.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Badali H, Chander J, Bayat M, et al. Multiple subcutaneous cysts due to Exophiala spinifera in an immunocompetent patient. Med Mycol. 2012;50:207–13.

    Article  PubMed  CAS  Google Scholar 

  2. Badali H, De Hoog GS, Sudhadham M, Meiss JF. Microdilution in vitro antifungal susceptibility of Exophiala dermatitidis, a systemic opportunist. Med Mycol. 2011;49:819–24.

    PubMed  CAS  Google Scholar 

  3. Biancalana FS, Lyra L, Schreiber AZ. In vitro evaluation of the type of interaction obtained by the combination of terbinafine and itraconazole, voriconazole, or amphotericin B against dematiaceous molds. Antimicrob Agents Chemother. 2011;55:4485–7.

    Article  PubMed  CAS  Google Scholar 

  4. Brandt ME, Warnock DW. Epidemiology, clinical manifestations, and therapy of infections caused by dematiaceous fungi. J Chemother. 2003;15:36–47.

    PubMed  Google Scholar 

  5. Caligiorne RB, Resende MA, Melillo PH, et al. In vitro susceptibility of chromoblastomycosis and phaeohyphomycosis agents to antifungal drugs. Med Mycol. 1999;37:405–9.

    Article  PubMed  CAS  Google Scholar 

  6. Castro LGM, Andrade TS. Chromoblastomycosis: still a therapeutic challenge. Expert Rev Dermatol. 2010;5:433–43.

    Article  Google Scholar 

  7. Chandrasekar PH, Manavathu E. Voriconazole: a second generation triazole. Drugs Today. 2001;37:135–48.

    PubMed  CAS  Google Scholar 

  8. Chen A, Sobel JD. Emerging azole antifungals. Expert Opin Emerg Drugs. 2005;10:21–33.

    Article  PubMed  CAS  Google Scholar 

  9. Chryssanthou E, Cuenca-Estrella M. Comparison of the antifungal susceptibility testing subcommittee of the European committee on antibiotic susceptibility testing proposed standard and the E-test with the NCCLS broth microdilution method for voriconazole and caspofungin susceptibility testing of yeast species. J Clin Microbiol. 2002;40:3841–4.

    Article  PubMed  CAS  Google Scholar 

  10. CLSI. Clinical Laboratory Standards Institute. Reference method for broth dilution antifungal susceptibility testing of filamentous fungi: second edition (M38–A2). Wayne: CLSI; 2008.

    Google Scholar 

  11. Cuenca-Estrella M, Gomez-Lopez A, Mellado E, Buitrago MJ, Monzon A, Rodriguez-Tudela JL. Head-to-head comparison of the activities of currently available antifungal agents against 3,378 Spanish clinical isolates of yeasts and filamentous fungi. Antimicrob Agents Chemother. 2006;50:917–21.

    Article  PubMed  CAS  Google Scholar 

  12. Espinel-Ingroff A, Chaturvedi V, Fothergill A, Rinaldi MG. Optimal testing conditions for determining MICs and minimum fungicidal concentrations of new and established antifungal agents for uncommon molds: NCCLS collaborative study. J Clin Microbiol. 2002;40:3776–81.

    Article  PubMed  CAS  Google Scholar 

  13. Espinel-Ingroff A. In vitro fungicidal activities of voriconazole, itraconazole, and amphotericin B against opportunistic moniliaceous and dematiaceous fungi. J Clin Microbio. 2001;39:954–8.

    Article  CAS  Google Scholar 

  14. Fothergill AW, Rinaldi MG, Sutton DA. Antifungal susceptibility testing of Exophiala spp.: a head-to-head comparison of amphotericin B, itraconazole, posaconazole and voriconazole. Med Mycol. 2009;47:41–3.

    Article  PubMed  CAS  Google Scholar 

  15. van den Gerrits Ende AHG, de Hoog GS. Variability and molecular diagnostics of the neurotropic species Cladophialophora bantiana. Stud Mycol. 1999;43:152–62.

    Google Scholar 

  16. Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser. 1999;41:95–8.

    CAS  Google Scholar 

  17. Harris JE, Sutton DA, Rubin A, Wickes B, de Hoog GS, Kovarik C. Exophiala spinifera as a cause of cutaneous phaeohyphomycosis: case study and review of the literature. Med Mycol. 2009;47:87–93.

    Article  PubMed  Google Scholar 

  18. Krishnan-Natesan S. Terbinafine: a pharmacological and clinical review. Expert Opin Pharmacother. 2009;10:2723–33.

    Article  PubMed  CAS  Google Scholar 

  19. Li DM, Li RY, de Hoog GS, Sudhadham M, Wang DL. Fatal Exophiala infections in China, with a report of seven cases. Mycoses. 2011;54:e136–42.

    Article  PubMed  Google Scholar 

  20. Li D, Li R, Wang D, Ma S. In vitro activities of five antifungal agents against pathogenic Exophiala species. Chin Med J. 1999;112:484–8.

    PubMed  CAS  Google Scholar 

  21. Lin YP, Li W, Yang YP, Huang WM, Fan YM. Cutaneous phaeohyphomycosis caused by Exophiala spinifera in a patient with systemic lupus erythematosus. Lupus. 2011;21:548–51.

    Article  PubMed  Google Scholar 

  22. Masclaux F, Gueho E, de Hoog GS, Christen R. Phylogenetic relationship of human-pathogenic Cladosporium (Xylohypha) species inferred from partial LS rRNA sequences. J Med Vet Mycol. 1995;33:327–38.

    Article  PubMed  CAS  Google Scholar 

  23. McGinnis MR, Pasarell L. In vitro testing of susceptibilities of filamentous ascomycetes to voriconazole, itraconazole, and amphotericin, with consideration of phylogenetic implications. J Clin Microbiol. 1998;36:2353–5.

    PubMed  CAS  Google Scholar 

  24. Meletiadis J, Mouton JW, Rodriguez-Tudela JL, Meiss JF, Verweij PE. In vitro interaction of terbinafine with itraconazole against clinical isolates of Scedosporium prolificans. Antimicrob Agents Chemother. 2000;44:470–2.

    Article  PubMed  CAS  Google Scholar 

  25. Negroni R, Helou SH, Petri N, Robles AM, Arechavala A, Bianchi MH. Case study: posaconazole treatment of disseminated phaeohyphomycosis due to Exophiala spinifera. Clin Infect Dis. 2004;8:e15–20.

    Article  Google Scholar 

  26. Padhye AA, Ajello L, Chandler FW, et al. Phaeohyphomycosis in El Salvador caused by Exophiala spinifera. Am J Trop Med Hyg. 1983;32:799–803.

    PubMed  CAS  Google Scholar 

  27. Padhye AA, Hampton AA, Hampton MT, et al. Chromoblastomycosis caused by Exophiala spinifera. Clin Infect Dis. 1996;22:331–5.

    Article  PubMed  CAS  Google Scholar 

  28. Pang KR, Wu JJ, Huang DB, Tyring SK. Subcutaneous fungal infections. Dermatol Ther. 2004;17:523–53.

    Article  PubMed  Google Scholar 

  29. Pfaller MA, Andes D, Arendrup MC, et al. Clinical breakpoints for voriconazole and Candida spp. revisited: review of microbiologic, molecular, pharmacodynamic, and clinical data as they pertain to the development of species-specific interpretive criteria. Diag Microbiol Infect Dis. 2011;70:330–43.

    Article  CAS  Google Scholar 

  30. Pradinaud MA, Bolzinger T. Treatment of chromoblastomycosis. J Am Acad Dermatol. 1991;25:869–70.

    Article  PubMed  CAS  Google Scholar 

  31. Radhakrishnan D, Jayalakshmi G, Madhumathy A, Banu ST, Geethalakshmi S, Sumathi G. Subcutaneous phaeohyphomycosis due to Exophiala spinifera in an immunocompromised host. Indian J Med Microbiol. 2010;28:396–9.

    Article  PubMed  Google Scholar 

  32. Revankar SG. Dematiaceous fungi. Mycoses. 2007;50:91–101.

    Article  PubMed  Google Scholar 

  33. Revankar SG. Phaeohyphomycosis. Infect Dis Clin N Am. 2006;20:609–20.

    Article  Google Scholar 

  34. Sabatelli F, Patel R, Mann PA, et al. In vitro activities of posaconazole, fluconazole, itraconazole, voriconazole, and amphotericin B against a large collection of clinically important molds and yeasts. Antimicrob Agents Chemother. 2006;50:2009–15.

    Article  PubMed  CAS  Google Scholar 

  35. Satow MM, Attili-Angelis D, de Hoog GS, de Angelis DF Vicente VA. Selective factors involved in oil flotation isolation of black yeasts from the environment. Stud Mycol. 2008;61:157–63.

    Article  PubMed  CAS  Google Scholar 

  36. Sudhadham M, de Hoog GS, Menken SB, Gerrits VDEA, Sihanonth P. Rapid screening for genotypes as possible markers of virulence in the neurotropic black yeast Exophiala dermatitidis using PCR-RFLP. J Microbiol Methods. 2010;80:138–42.

    Article  PubMed  CAS  Google Scholar 

  37. Liu Sun Yi Wei, Wan Zhe, Wang Xiaohong, Li Ruoyu. Antifungal activity of antifungal drugs, as well as drug combinations against Exophiala dermatitidis. Mycopathologia. 2011;171:111–7.

    Article  PubMed  Google Scholar 

  38. Uijthof JM, de Hoog GS, de Cock AW, Takeo K, Nishimura K. Pathogenicity of strains of the black yeast Exophiala (Wangiella) dermatitidis: an evaluation based on polymerase chain reaction. Mycoses. 1994;37:235–42.

    Article  PubMed  CAS  Google Scholar 

  39. Vicente VA, Attili-Angelis D, Pie MR, et al. Environmental isolation of black yeast-like fungi involved in human infection. Stud Mycol. 2008;61:137–44.

    Article  PubMed  CAS  Google Scholar 

  40. Vitale RG, Afeltra J, de Hoog GS, Rijs AJ, Verweij PE. In vitro activity of amphotericin B and itraconazole in combination with flucytosine, sulfadiazine and quinolones against Exophiala spinifera. J Antimicrobial Chemother. 2003;51:1297–300.

    Article  CAS  Google Scholar 

  41. Vitale RG, de Hoog GS, Verweij PE. In vitro activity of amphotericin, itraconazole, terbinafine and 5-flucytosine against Exophiala spinifera and evaluation of post antifungal effects. Med Mycol. 2003;41:301–7.

    Article  PubMed  CAS  Google Scholar 

  42. Vitale RG, de Hoog GS. Molecular diversity, new species and antifungal susceptibilities in the Exophiala spinifera clade. Med Mycol. 2002;40:545–56.

    PubMed  CAS  Google Scholar 

  43. White TJ, Bruns T, Lee S, Taylor JW. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ, editors. PCR protocols: a guide to methods and applications. New York: Academic Press; 1990. p. 315–22.

    Google Scholar 

  44. Zeng JS, Sutton DA, Fothergill AW, Rinaldi MG, Harrak MJ, de Hoog GS. Spectrum of clinically relevant Exophiala species in the United States. J Clin Microbiol. 2007;45:3713–20.

    Article  PubMed  CAS  Google Scholar 

  45. Zhang J, Xi L, Lu C, Li X, Xie T, Zhang H, Xie Z, de Hoog S. Successful treatment for chromoblastomycosis caused by Fonsecaea monophora: a report of three cases in Guangdong. China Mycoses. 2009;52:176–81.

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by “Fundação de Amparo a Pesquisa do Estado de São Paulo” (FAPESP—Proc. 2010/02032-9) and the “Brazilian Petroleum Company” (Petrobrás—RH-UP 002/2008). The authors would like to thank Dr. Sybren de Hoog for comments on the text.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Derlene Attili-Angelis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duarte, A.P.M., Pagnocca, F.C., Baron, N.C. et al. In Vitro Susceptibility of Environmental Isolates of Exophiala dermatitidis to Five Antifungal Drugs. Mycopathologia 175, 455–461 (2013). https://doi.org/10.1007/s11046-012-9597-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11046-012-9597-9

Keywords

Navigation