Skip to main content
Log in

The injectivity of the canonical signal module for multidimensional linear systems of difference equations with variable coefficients

  • Published:
Multidimensional Systems and Signal Processing Aims and scope Submit manuscript

Abstract

We consider discrete behaviors with varying coefficients. Our results are new also for one-dimensional systems over the time-axis of natural numbers and for varying coefficients in a field, we derive the results, however, in much greater generality: Instead of the natural numbers we use an arbitrary submonoid N of an abelian group, for instance the standard multidimensional lattice of r-dimensional vectors of natural numbers or integers. We replace the base field by any commutative self-injective ring F, for instance a direct product of fields or a quasi-Frobenius ring or a finite factor ring of the integers. The F-module W of functions from N to F is the canonical discrete signal module and is a left module over the natural associated noncommutative ring A of difference operators with variable coefficients. Our main result states that this module is injective and therefore satisfies the fundamental principle: An inhomogeneous system of linear difference equations with variable coefficients has a solution if and only if the right side satisfies the canonical compatibility conditions. We also show that for the typical cases of partial difference equations and in contrast to the case of constant coefficients the A-module W is not a cogenerator. We also generalize the standard one-dimensional theory for periodic coefficients to the multidimensional situation by invoking Morita equivalence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aleixo, J., Polderman, J. W., & Rocha, P. (2007a). Representations and structural properties of periodic systems. Automatica, 43, 1921–1931.

    Article  MATH  MathSciNet  Google Scholar 

  • Aleixo, J. C., Rocha, P., & Polderman, J. W. (2007b). A contribution to the study of periodic systems in the behavioral approach. In F. Lamnabhi-Laguarrigue, A. Loria, E. Planteley, & S. Lagarouche (Eds.), Taming heterogeneity and complexity in embedded control (pp. 23–38). Paris: ISTE/Hermes Science Publications.

    Google Scholar 

  • Bittanti, S., & Colaneri, P. (2009). Periodic systems: Filtering and control. Berlin: Springer.

    MATH  Google Scholar 

  • Bourlès, H., & Marinescu, B. (2011). Linear time-varying systems. Berlin: Springer.

    Book  MATH  Google Scholar 

  • Bourlès, H., Marinescu, B., & Oberst, U. (2015). Exponentially stable linear time-varying discrete behaviors. SIAM Journal Control Optimization (submitted in revised form).

  • Bourlès, H., & Oberst, U. (2015). Generalized convolution behaviors and topological algebra. Acta Applicandae Mathematicae. doi:10.1007/s10440-015-0007-4.

  • Chyzak, F., Quadrat, A., & Robertz, D. (2007). OreModules: A symbolic package for the study of multidimensional linear systems. In J. Chiasson & J.-J. Loiseau (Eds.), Applications of time-delay systems, lecture notes in control and information sciences (Vol. 352, pp. 233–264). Berlin: Springer.

    Google Scholar 

  • Fliess, M. (1990). Some basic structural properties of generalized linear systems. Systems and Control Letters, 15, 391–396.

    Article  MATH  MathSciNet  Google Scholar 

  • Fröhler, S., & Oberst, U. (1998). Continuous time-varying linear systems. Systems and Control Letters, 35, 97–110.

    Article  MATH  MathSciNet  Google Scholar 

  • Glüsing-Lürssen, H., Vettori, P., & Zampieri, S. (2001). The algebraic structure of DD systems: A behavioral perspective. Kybernetica, 37, 397–426.

    MATH  Google Scholar 

  • Kashiwara, M., Kawai, T., & Kimura, T. (1986). Foundations of algebraic analysis. Princeton: Princeton University Press.

    MATH  Google Scholar 

  • Kuijper, M., & Willems, J. C. (1997). A behavioral framework for periodically time-varying systems. In Proceedings of 36th IEEE conference on decision and control, San Diego.

  • Kuijper, M., Pinto, R., Polderman, J.W., & Rocha, P. (2006). Autonomicity and the absence of free variables for behaviors over finite rings. In Proceedings of 7th Portuguese conference on automatic control, Lisbon, Portugal.

  • Lam, T. Y. (1999). Lectures on modules and rings. New York: Springer.

    Book  MATH  Google Scholar 

  • Lu, P., Liu, M., & Oberst, U. (2004). Linear recurring arrays, linear systems and multidimensional cyclic codes over quasi-Frobenius rings. Acta Applicandae Mathematicae, 80, 175–198.

    Article  MATH  MathSciNet  Google Scholar 

  • McConnell, J. C., & Robson, J. C. (1987). Noncommutative Noetherian rings. Chichester: Wiley.

    MATH  Google Scholar 

  • Nechaev, A. A. (1992). Linear recurrence sequences over commutative rings. Discrete Mathematics and Applications, 2, 659–683.

    Article  MATH  MathSciNet  Google Scholar 

  • Oberst, U. (1990). Multidimensional constant linear systems. Acta Applicandae Mathematicae, 20, 1–175.

    Article  MATH  MathSciNet  Google Scholar 

  • Quadrat, A. (2015). Algebraic analysis of linear functional systems (book in preparation).

  • Robertz, D. (2015). Recent progress in an algebraic analysis approach to linear systems. Multidimensional Systems and Signal Processing. doi:10.1007/s11045-014-0280-9.

  • Rugh, W. J. (1996). Linear system theory. Upper Saddle River, NJ: Prentice Hall.

    MATH  Google Scholar 

  • Zerz, E. (2006). An algebraic analysis approach to linear time-varying systems. IMA Journal of Mathematical Control and Information, 23, 113–126.

    Article  MATH  MathSciNet  Google Scholar 

  • Zerz, E. (2010) On periodic solutions of linear difference equations. In Proceedings MTNS 2010, (pp. 1567–1570), Budapest

  • Zerz, E., & Wagner, L. (2012). Finite multidimensional behaviors. Multidimensional Systems and Signal Processing, 23, 5–15.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

We thank the two reviewers for their careful reading of and useful suggestions for the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. Oberst.

Additional information

Dedicated to Professor Ettore Fornasini on the occasion of his seventieth birthday.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bourlès, H., Marinescu, B. & Oberst, U. The injectivity of the canonical signal module for multidimensional linear systems of difference equations with variable coefficients. Multidim Syst Sign Process 28, 75–103 (2017). https://doi.org/10.1007/s11045-015-0331-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11045-015-0331-x

Keywords

Mathematics Subject Classfication

Navigation