Skip to main content
Log in

A novel range alignment method for ISAR based on linear T/R array model

  • Published:
Multidimensional Systems and Signal Processing Aims and scope Submit manuscript

Abstract

In inverse synthetic aperture radar (ISAR) imaging, translation compensation should be done before range-Doppler imaging process, and range alignment is the first step for translation compensation. In order to remove the limitation of integer range bin and align the echoes precisely for ISAR range alignment, combining with the advantage of array signal processing at fractional unit delay compensation, we propose a novel range alignment method based on linear transmitting/receiving (T/R) array. Firstly the ISAR imaging system is modeled as a linear T/R array. Then based on the snapshot imaging model of linear T/R array, range alignment is accomplished by wave path difference compensation which is transformed into the phase difference compensation in frequency domain between adjacent array elements. The phase difference compensation consists of integer range bin alignment and decimal time delay compensation which is implemented by the phase rotation’s estimation and compensation in frequency domain. Finally, the results of simulation data and real radar data are provided to demonstrate the effectiveness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Delisle, G. Y., & Wu, H. (1994). Moving target imaging and trajectory computation using ISAR. IEEE Transactions on Aerospace and Electronic Systems, 30(3), 887–899.

    Article  Google Scholar 

  • Dooley, S. R., & Nandi, A. K. (1999). Adaptive subsample time delay estimation using Lagrange interpolators. IEEE Signal Processing Letters, 6(3), 65–67.

    Article  Google Scholar 

  • Foo, S., & Kashyap, S. (2003). Time-domain array factor for UWB antenna array. Electronic Letters, 39(18), 1304–1305.

    Article  Google Scholar 

  • Gunaratne, T. K., & Bruton, L. T. (2011). Broadband beamforming of dense aperture array (DAA) and focal plane array (FPA) signals using 3D spatio-temporal filters for applications in aperture synthesis radio astronomy. Multidimensional Systems and Signal Processing, 22(1–3), 213–236.

    Article  MATH  MathSciNet  Google Scholar 

  • Hachabiboglu, H., Gunel, B., & Kondoz, A. M. (2007). Analysis of root displacement interpolation method for tunable allpass fractional-delay filters. IEEE Transactions on Signal Processing, 55(10), 4896–4906.

    Article  MathSciNet  Google Scholar 

  • Jeong, H., Kim, H., & Kim, K. (2008). Application of subarray averaging and entropy minimization algorithm to stepped-frequency ISAR autofocus. IEEE Transactions on Antennas and Propagation, 56(4), 1144–1154.

    Article  MathSciNet  Google Scholar 

  • Jiang, B., & Chen, F. H. (2007). High precision time delay estimation using generalised MVDR cross spectrum. Electronics Letters, 43(2), 131–133.

    Article  Google Scholar 

  • Kim, H., Johnson, J. T., & Baertlein, B. A. (2000). High resolution Ka-band images of a small tree: Measurements and models. IEEE Transactions on Geoscience and Remote Sensing, 38(2), 899–910.

    Article  Google Scholar 

  • Laakso, T. I., Valimaki, V., Karjalainen, M., & Laine, U. K. (1996). Splitting the unit delay [FIR/all pass filters design]. IEEE Signal Processing Magazine, 13(1), 30–60.

    Article  Google Scholar 

  • Liu, Z., Ruan, X., & He, J. (2013). Efficient 2-D DOA estimation for coherent sources with a sparse acoustic vector-sensor array. Multidimensional Systems and Signal Processing, 24(1), 105–120.

    Article  MATH  MathSciNet  Google Scholar 

  • Mensa, D. L. (1982). High Resolution Radar Imaging. Norwood, MA: Artech House.

    Google Scholar 

  • Munoz-Ferreras, J., & Perez-Martinez, F. (2009). Pitch estimation for non-cooperative maritime targets in ISAR scenarios. Radar, Sonar and Navigation IET, 3(5), 521–529.

    Article  Google Scholar 

  • Skolnik, M. (2002). Introduction to radar systems. New York: McGraw-Hill.

    Google Scholar 

  • Su, Z., & Yuan, Y., (2011). Range alignment methods for ISAR imaging. In Proceedings of the international conference on graphic and image processing (Vol. 8285).

  • Viola, F., & Walker, W. F. (2005). A spline-based algorithm for continuous time-delay estimation using sampled data. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 52(1), 80–93.

    Article  Google Scholar 

  • Wang, M., Yang, S. Y., & Wu, S. J. (2006). Beamforming of UWB pulse array and its implementation. Digital Signal Processing, 16(16), 333–342.

    Article  Google Scholar 

  • Ward, D. B. (1995). Theory and design of broadband sensor arrays with frequency invariant far field beam patterns. Journal of the Acoustic Society of America, 97(2), 1023–1034.

    Article  Google Scholar 

  • Xing, M., Wu, R., Li, Y., & Bao, Z. (2009). New ISAR imaging algorithm based on modified Wigner-Ville distribution. Radar Sonar and Navigation IET, 3(1), 70–80.

    Article  Google Scholar 

  • Zhu, Y., Su, Y., & Yu, W. (2010). An ISAR imaging method based on MIMO technique. IEEE Transactions on Geoscience and Remote Sensing, 48(8), 3290–3299.

    Article  Google Scholar 

  • Zhu, D., Wang, L., Yu, Y., Tao, Q., & Zhu, Z. (2009). Robust ISAR range alignment via minimizing the entropy of the average range profile. Geoscience and Remote Sensing Letters IEEE, 6(2), 204–208.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinggan Zhang.

Additional information

This work was supported by Industry-academic Joint Technological Innovations Fund Project of Jiangsu Province (BY2012187), NSFC (61101082), Natural Science Foundation of Jiangsu Province (BK2011562), Natural Science Foundation of Jiangsu Province (BK2010376) and Graduate Innovation Program of Jiangsu Province (CXZZ11_0043).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wei, Y., Zhang, X., Bai, Y. et al. A novel range alignment method for ISAR based on linear T/R array model. Multidim Syst Sign Process 25, 759–773 (2014). https://doi.org/10.1007/s11045-013-0229-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11045-013-0229-4

Keywords

Navigation