Skip to main content
Log in

On the Newton bivariate polynomial interpolation with applications

  • Published:
Multidimensional Systems and Signal Processing Aims and scope Submit manuscript

Abstract

The main purpose of this work is to provide recursive algorithms for the computation of the Newton interpolation polynomial of a given two-variable function. The special case where the interpolation polynomial has known upper bounds on the degree of each indeterminate is studied and applied to the computation of the inverse of a two-variable polynomial matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Antoniou E. G. (2001) Transfer function computation for generalized ndimensional systems. Journal of the Franklin Institute 338: 83–90

    Article  MATH  MathSciNet  Google Scholar 

  • Ben-Israel A., Greville T. N. (2003) Generalized inverses: Theory and applications (2nd ed.). Springer, New York

    Google Scholar 

  • de Boor C., Ron A. (1990) On multivariate polynomial interpolation. Constructive Approximation 6: 287–302

    Article  MATH  MathSciNet  Google Scholar 

  • Fausett L. V. (2002) Numerical methods: Algorithms and applications. Prentice Hall, Englewood Cliffs

    Google Scholar 

  • Fragulis G., Mertzios B. G., Vardulakis A. I. G. (1991) Computation of the inverse of a polynomial matrix and evaluation of its laurent expansion. International Journal of Control 53(2): 431–443

    Article  MATH  MathSciNet  Google Scholar 

  • Gasca M., Martinez J. J. (1992) Bivariate hermite-birkhof interpolation and vandermonde determinants. Numerical Algorithms 2: 193–199

    Article  MathSciNet  Google Scholar 

  • Gasca M., Sauer T. (2000a) On the history of multivariate polynomial interpolation, numerical analysis, 2000, vol. ii: Interpolation and extrapolation. Journal of Computational and Applied Mathematics 122(1-2): 23–35

    Article  MATH  MathSciNet  Google Scholar 

  • Gasca M., Sauer T. (2000b) Polynomial interpolation in several variables. Advances in Computational Mathematics 12: 377–410

    Article  MATH  MathSciNet  Google Scholar 

  • Hromcik, M., & Sebek, M. (2001). Fast fourier transform and linear polynomial matrix equations. In Proceedings of the 1rst IFAC workshop on systems structure and control, Prague, Czech Republic.

  • Karampetakis N., Evripidou A. (2012) On the computation of the inverse of a two-variable polynomial matrix by interpolation. Multidimensional Systems and Signal Processing 23: 97–118

    Article  MATH  MathSciNet  Google Scholar 

  • Karampetakis N. P. (1997a) Computation of the generalized inverse of a polynomial matrix and applications. Linear Algebra and its Applications 252(13): 35–60

    Article  MATH  MathSciNet  Google Scholar 

  • Karampetakis N. P. (1997b) Generalized inverses of two-variable polynomial matrices and applications. Circuits, Systems, and Signal Processing 16(4): 439–453

    Article  MATH  MathSciNet  Google Scholar 

  • Karampetakis N. P., Vologiannidis S. (2003) Dft calculation of the generalized and drazin inverse of a polynomial matrix. Applied Mathematics and Computation 143: 501–521

    Article  MATH  MathSciNet  Google Scholar 

  • Karampetakis N. P., Mertzios B. G., Vardulakis A. I. G. (1994) Computation of the transfer function matrix and its laurent expansion of generalized two-dimensional systems. International Journal of Control 60(4): 521–541

    Article  MATH  MathSciNet  Google Scholar 

  • Lipson, J. D. (1976). The fast fourier transform, its role as an algebraic algorithm. In Proceedings of the ACM annual conference/annual meeting, pp. 436–441.

  • Lobo, R. G., Bitzer, D. L., & Vouk, M. A. (2006). Locally invertible multivariate polynomial matrices, Lecture notes in computer science (including subseries lecture notes in artificial intelligence and lecture notes in bioinformatics), Vol. 3969.

  • Neidinger, R. D. (2009). Multivariable interpolating polynomials in newton forms. In Joint mathematics meetings 2009, Washington, DC, January 5–8.

  • Olver P. J. (2006) On multivariate interpolation. Studies in Applied Mathematics 116: 201–240

    Article  MATH  MathSciNet  Google Scholar 

  • Paccagnella L. E., Pierobon G. L. (1976) Fft calculation of a determinantal polynomial. IEEE Transactions on Automatic Control 29(3): 401–402

    Article  Google Scholar 

  • Phillips G. M. (2003) Interpolation and approximation by polynomials. Springer, New York

    MATH  Google Scholar 

  • Sauer T., Xu Y. (1995) On multivariate lagrange interpolation. Mathematics of Computation 64: 1147–1170

    Article  MATH  MathSciNet  Google Scholar 

  • Schuster A., Hippe P. (1992) Inversion of polynomial matrices by interpolation. IEEE Transactions on Automatic Control 37: 363–365

    Article  MathSciNet  Google Scholar 

  • Varsamis, D. N., & Karampetakis, N. P. (2011). On the newton multivariate polynomial interpolation with applications. In 2011 7th international workshop on multidimensional (nD) systems (nDs), Poitiers, France. doi:10.1109/nDS.2011.6076875.

  • Vologiannidis S., Karampetakis N. P. (2004) Inverses of multivariable polynomial matrices by discrete fourier transforms. Multidimensional Systems and Signal Processing 15: 341–361

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimitris N. Varsamis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Varsamis, D.N., Karampetakis, N.P. On the Newton bivariate polynomial interpolation with applications. Multidim Syst Sign Process 25, 179–209 (2014). https://doi.org/10.1007/s11045-012-0198-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11045-012-0198-z

Keywords

Navigation