Skip to main content
Log in

A methodology for simulations of multi-rigid body systems with topology changes

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

This paper represents a simple and accurate method based on the impulse–momentum equation for the numerical simulation of multi-body systems with topology changes. The method takes full advantage of Lagrangian equations of the first type, which are the differential algebra equations (DAEs) of a multi-rigid body system. The basic concept is to integrate dynamic equations over a topologically changing duration that is a short period of time to obtain impulse-momentum equations. Next, the topology change event can be treated as an instantaneous progression in the numerical simulation. Additionally, constraint violation elimination was fully considered for the accuracy of the subsequent calculations after the topology changes. This method is applicable for systems with chain, tree and close-loop topologies. Two numerical test cases of chain and close-loop systems are simulated to testify the efficiency and accuracy of this methodology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Piedboeuf, J., Gonthier, Y., McPhee, J., Lange, C.: A regularized contact model with asymmetric damping and dwell-time dependent friction. Multibody Syst. Dyn. 11, 209–233 (2004)

    Article  MATH  Google Scholar 

  2. Jean, M.: The non-smooth contact dynamics method. Comput. Methods Appl. Mech. Eng. 177, 235–257 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  3. Gilardi, G., Sharf, I.: Literature survey of contact dynamics modelling. Mech. Mach. Theory 37, 1213–1239 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  4. Shi, J., Hong, J., Liu, Z.: Multi-variable approach of contact-impact issue in variable topology system. Theor. Appl. Mech. Lett. 3(1), 58–62 (2013)

    Article  Google Scholar 

  5. Qi, F., Wang, T., Li, J.: The elastic contact influences on passive walking gaits. Robotica 29(5), 787–796 (2011)

    Article  Google Scholar 

  6. Glocker, C., Pfeiffer, F.: Multiple impacts with friction in multibody systems. Nonlinear Dyn. 7, 471–497 (1995)

    Article  MathSciNet  Google Scholar 

  7. Förg, M., Pfeiffer, F., Ulbrich, H.: Simulation of unilateral constrained systems with many bodies. Multibody Syst. Dyn. 14, 137–154 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  8. Mukherjee, R.M., Anderson, K.S.: Efficient methodology for multibody simulations with discontinuous changes in system definition. Multibody Syst. Dyn. 18, 145–168 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. Khan, I.M., Poursina, M., Anderson, K.S.: Model transitions and optimization problem in multi-flexible-body systems: application to modeling molecular systems. Comput. Phys. Commun. 184, 1717–1728 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  10. Wang, H., Eberhard, P., Lin, Z.: Modeling and simulation of closed loop multibody systems with bodies-joints composite modules. Multibody Syst. Dyn. 24, 389–411 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Piedboeuf, J., Gonthier, Y., McPhee, J., Lange, C.: A regularized contact model with asymmetric damping and dwell-time dependent friction. Multibody Syst. Dyn. 11, 209–233 (2004)

    Article  MATH  Google Scholar 

  12. Trinkle, J., Zeng, D., Sudarsky, S., Lo, G.: On dynamic multi-rigid-body contact problems with Coulomb friction. Z. Angew. Math. Mech. 77(4), 267–279 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hong, J.: Computational Dynamics of Multibody Systems. Higher Education Press, Beijing (1999)

    Google Scholar 

  14. Braun, D.J., Goldfarb, M.: Eliminating constraint drift in the numerical simulation of constrained dynamical systems. Comput. Methods Appl. Mech. Eng. 198, 3151–3160 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Baumgarte, J.: Stabilization of constraints and integrals of motion in dynamical systems. Comput. Methods Appl. Mech. Eng. 1, 1–16 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  16. Pereira, M.S., Nikravesh, P.: Impact dynamics of multibody systems with frictional contact using joint coordinates and canonical equations of motion. Nonlinear Dyn. 9(1–2), 53–71 (1996)

    Article  Google Scholar 

  17. Blajer, W.: Methods for constraint violation suppression in the numerical simulation of constrained multibody systems—a comparative study. Comput. Methods Appl. Mech. Eng. 200, 1568–1576 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Nikravesh, P.E.: Initial condition correction in multibody dynamics. Multibody Syst. Dyn. 18, 107–115 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  19. Yoon, S., Howe, R.M., Greenwood, D.T.: Stability and accuracy analysis of Baumgarte’s constrained violation stabilization method. J. Mech. Des. 117, 446–453 (1995)

    Article  Google Scholar 

  20. Yoon, S., Howe, R.M., Greenwood, D.T.: Geometric elimination of constraint violations in numerical simulation of Lagrangian equations. J. Mech. Des. 116, 1058–1064 (1994)

    Article  Google Scholar 

  21. Gear, C.W., Leimkuhler, B., Gupta, G.K.: Automatic integration of Euler–Lagrange equations with constraints. J. Comput. Appl. Math. 12–13, 77–90 (1985)

    Article  MathSciNet  Google Scholar 

  22. Petzold, L.R.: Numerical solution of differential-algebraic equations in mechanical systems simulation. Physica D 60(1–4), 269–279 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  23. ten Dam, A.A.: Stable numerical integration of dynamical systems subject to equality state-space constraints. J. Eng. Math. 26, 315–337 (1992)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tianshu Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, W., Wang, T. A methodology for simulations of multi-rigid body systems with topology changes. Multibody Syst Dyn 35, 25–38 (2015). https://doi.org/10.1007/s11044-015-9456-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-015-9456-9

Keywords

Navigation