Skip to main content
Log in

Experimental validation of flexible multibody dynamics beam formulations

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

In this paper, the accuracies of the geometrically exact beam and absolute nodal coordinate formulations are studied by comparing their predictions against an experimental data set referred to as the “Princeton beam experiment.” The experiment deals with a cantilevered beam experiencing coupled flap, lag, and twist deformations. In the absolute nodal coordinate formulation, two different beam elements are used. The first is based on a shear deformable approach in which the element kinematics is described using two nodes. The second is based on a recently proposed approach featuring three nodes. The numerical results for the geometrically exact beam formulation and the recently proposed three-node absolute nodal coordinate formulation agree well with the experimental data. The two-node beam element predictions are similar to those of linear beam theory. This study suggests that a careful and thorough evaluation of beam elements must be carried out to assess their ability to deal with the three-dimensional deformations typically found in flexible multibody systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Houbolt, J.C., Brooks, G.W.: Differential equations of motion for combined flapwise bending, chordwise bending, and torsion of twisted nonuniform rotor blades. Technical Report 1348, NACA Report (1958)

  2. Hodges, D.H., Dowell, E.H.: Nonlinear equations of motion for the elastic bending and torsion of twisted nonuniform rotor blades. Technical Report, NASA TN D-7818 (1974)

  3. Dowell, E.H., Traybar, J.J.: An experimental study of the nonlinear stiffness of a rotor blade undergoing flap, lag, and twist deformations. Aerospace and Mechanical Science Report 1257, Princeton University (1975)

  4. Dowell, E.H., Traybar, J.J., Hodges, D.H.: An experimental-theoretical correlation study of non-linear bending and torsion deformations of a cantilever beam. J. Sound Vib. 50(4), 533–544 (1977)

    Article  Google Scholar 

  5. Simo, J.C.: A finite strain beam formulation. The three-dimensional dynamic problem. Part I. Comput. Methods Appl. Mech. Eng. 49(1), 55–70 (1985)

    Article  MathSciNet  Google Scholar 

  6. Simo, J.C., Vu-Quoc, L.: A three-dimensional finite strain rod model. Part II: Computational aspects. Comput. Methods Appl. Mech. Eng. 58(1), 79–116 (1986)

    Article  Google Scholar 

  7. Borri, M., Merlini, T.: A large displacement formulation for anisotropic beam analysis. Meccanica 21, 30–37 (1986)

    Article  Google Scholar 

  8. Danielson, D.A., Hodges, D.H.: Nonlinear beam kinematics by decomposition of the rotation tensor. J. Appl. Mech. 54(2), 258–262 (1987)

    Article  Google Scholar 

  9. Danielson, D.A., Hodges, D.H.: A beam theory for large global rotation, moderate local rotation, and small strain. J. Appl. Mech. 55(1), 179–184 (1988)

    Article  Google Scholar 

  10. Bauchau, O.A., Hong, C.H.: Finite element approach to rotor blade modeling. J. Am. Helicopter Soc. 32(1), 60–67 (1987)

    Article  Google Scholar 

  11. Bauchau, O.A., Hong, C.H.: Large displacement analysis of naturally curved and twisted composite beams. AIAA J. 25(11), 1469–1475 (1987)

    Article  Google Scholar 

  12. Bauchau, O.A., Hong, C.H.: Nonlinear composite beam theory. J. Appl. Mech. 55, 156–163 (1988)

    Article  Google Scholar 

  13. Shabana, A.A., Wehage, R.A.: A coordinate reduction technique for dynamic analysis of spatial substructures with large angular rotations. J. Struct. Mech. 11(3), 401–431 (1983)

    Article  Google Scholar 

  14. Agrawal, O.P., Shabana, A.A.: Application of deformable-body mean axis to flexible multibody system dynamics. Comput. Methods Appl. Mech. Eng. 56(2), 217–245 (1986)

    Article  Google Scholar 

  15. Shabana, A.A.: Flexible multibody dynamics: Review of past and recent developments. Multibody Syst. Dyn. 1(2), 189–222 (1997)

    Article  MathSciNet  Google Scholar 

  16. Romero, I.: A comparison of finite elements for nonlinear beams: the absolute nodal coordinate and geometrically exact formulations. Multibody Syst. Dyn. 20, 51–68 (2008)

    Article  MathSciNet  Google Scholar 

  17. Gerstmayr, J., Sugiyama, H., Mikkola, A.: An overview on the developments of the absolute nodal coordinate formulation. In: Proceedings of the Second Joint International Conference on Multibody System Dynamics, Stuttgart, Germany, May 2012 (2012)

    Google Scholar 

  18. Bauchau, O.A., Han, S.L., Mikkola, A., Matikainen, M.K.: Comparison of the absolute nodal coordinate and geometrically exact formulations for beams. Multibody Syst. Dyn. 32(1), 67–85 (2014)

    Article  MathSciNet  Google Scholar 

  19. Bauchau, O.A., Craig, J.I.: Structural Analysis with Application to Aerospace Structures. Springer, Dordrecht, Heidelberg, London, New York (2009)

    Google Scholar 

  20. Timoshenko, S.P.: On the correction factor for shear of the differential equation for transverse vibrations of bars of uniform cross-section. Philos. Mag. 41, 744–746 (1921)

    Article  Google Scholar 

  21. Timoshenko, S.P.: On the transverse vibrations of bars of uniform cross-section. Philos. Mag. 43, 125–131 (1921)

    Article  Google Scholar 

  22. Reissner, E.: The effect of transverse shear deformation on the bending of elastic plates. Z. Angew. Math. Phys. 12, A.69–A.77 (1945)

    MathSciNet  Google Scholar 

  23. Mindlin, R.D.: Influence of rotatory inertia and shear on flexural motions of isotropic elastic plates. J. Appl. Mech. 18, 31–38 (1951)

    Google Scholar 

  24. Reissner, E.: On one-dimensional finite-strain beam theory: the plane problem. Z. Angew. Math. Phys. 23, 795–804 (1972)

    Article  Google Scholar 

  25. Reissner, E.: On one-dimensional large-displacement finite-strain beam theory. Stud. Appl. Math. 52, 87–95 (1973)

    Google Scholar 

  26. Reissner, E.: On finite deformations of space-curved beams. Z. Angew. Math. Phys. 32, 734–744 (1981)

    Article  Google Scholar 

  27. Malvern, L.E.: Introduction to the Mechanics of a Continuous Medium. Prentice Hall, Englewood Cliffs, New Jersey (1969)

    Google Scholar 

  28. Hodges, D.H.: Nonlinear Composite Beam Theory. AIAA, Reston (2006)

    Book  Google Scholar 

  29. Bauchau, O.A.: Flexible Multibody Dynamics. Springer, Dordrecht, Heidelberg, London, New York (2011)

    Book  Google Scholar 

  30. Giavotto, V., Borri, M., Mantegazza, P., Ghiringhelli, G., Carmaschi, V., Maffioli, G.C., Mussi, F.: Anisotropic beam theory and applications. Comput. Struct. 16(1–4), 403–413 (1983)

    Article  Google Scholar 

  31. Bauchau, O.A., Han, S.L.: Three-dimensional beam theory for flexible multibody dynamics. J. Comput. Nonlinear Dyn. 9(4), 041011 (2014) (12 pages)

    Article  Google Scholar 

  32. Dufva, K.E., Sopanen, J.T., Mikkola, A.M.: A three-dimensional beam element based on a cross-sectional coordinate system approach. Nonlinear Dyn. 43(4), 311–327 (2005)

    Article  Google Scholar 

  33. Nachbagauer, K., Gruber, P., Gerstmayr, J.: Structural and continuum mechanics approaches for a 3d shear deformable ancf beam finite element: Application to static and linearized dynamic examples. ASME J. Comput. Nonlinear Dyn. 8(2), 021004 (2013)

    Article  Google Scholar 

  34. Shabana, A.A., Yakoub, R.Y.: Three dimensional absolute nodal coordinate formulation for beam elements: Theory. ASME J. Mech. Des. 123, 606–613 (2001)

    Article  Google Scholar 

  35. Yakoub, R.Y., Shabana, A.A.: Three dimensional absolute nodal coordinate formulation for beam elements: Implementation and applications. ASME J. Mech. Des. 123, 614–621 (2001)

    Article  Google Scholar 

  36. Kerkkänen, K.S., Sopanen, J.T., Mikkola, A.M.: A linear beam finite element based on the absolute nodal coordinate formulation. J. Mech. Des. 127(4), 621–630 (2005)

    Article  Google Scholar 

  37. García-Vallejo, D., Mikkola, A., Escalona, J.L.: A new locking-free shear deformable finite element based on absolute nodal coordinates. Nonlinear Dyn. 50(1–2), 249–264 (2007)

    Article  Google Scholar 

  38. Gerstmayr, J., Matikainen, M.K., Mikkola, A.M.: A geometrically exact beam element based on the absolute nodal coordinate formulation. Multibody Syst. Dyn. 20(4), 359–384 (2008)

    Article  MathSciNet  Google Scholar 

  39. Nachbagauer, K., Pechstein, S.A., Irschik, H., Gerstmayr, J.: A new locking free formulation for planar, shear deformable, linear and quadratic beam finite elements based on the absolute nodal coordinate formulation. Multibody Syst. Dyn. 26(3), 245–263 (2011)

    Article  Google Scholar 

  40. Matikainen, M.K., von Hertzen, R., Mikkola, A.M., Gerstmayr, J.: Elimination of high frequencies in the absolute nodal coordinate formulation. Proc. Inst. Mech. Eng., Proc., Part K, J. Multi-Body Dyn. 224(1), 103–116 (2010)

    Google Scholar 

  41. Matikainen, M.K., Dmitrochenko, O., Mikkola, A.M.: Beam elements with trapezoidal cross-section deformation modes based on the absolute nodal coordinate formulation. In: International Conference of Numerical Analysis and Applied Mathematics, Rhodes, Greece, 19–25 September 2010 (2010)

    Google Scholar 

  42. Crisfield, M.A., Jelenić, G.: Objectivity of strain measures in the geometrically exact three-dimensional beam theory and its finite-element implementation. Proc. R. Soc., Math. Phys. Eng. Sci. 455(1983), 1125–1147 (1999)

    Article  Google Scholar 

  43. Bauchau, O.A., Epple, A., Heo, S.D.: Interpolation of finite rotations in flexible multibody dynamics simulations. Proc. Inst. Mech. Eng., Proc., Part K, J. Multi-Body Dyn. 222(K4), 353–366 (2008)

    Google Scholar 

  44. Bauchau, O.A., Han, S.L.: Interpolation of rotation and motion. Multibody Syst. Dyn. 31(3), 339–370 (2014)

    Article  MathSciNet  Google Scholar 

  45. Betsch, P.: The discrete null space method for the energy consistent integration of constrained mechanical systems. Part I: Holonomic constraints. Comput. Methods Appl. Mech. Eng. 194(50–52), 5159–5190 (2005)

    Article  MathSciNet  Google Scholar 

  46. Betsch, P., Leyendecker, S.: The discrete null space method for the energy consistent integration of constrained mechanical systems. Part II: Multibody dynamics. Int. J. Numer. Methods Eng. 67, 499–552 (2006)

    Article  MathSciNet  Google Scholar 

  47. Leyendecker, S., Betsch, P., Steinmann, P.: The discrete null space method for the energy consistent integration of constrained mechanical systems. Part III: Flexible multibody dynamics. Multibody Syst. Dyn. 19(1–2), 45–72 (2008)

    Article  MathSciNet  Google Scholar 

  48. Han, S.L., Bauchau, O.A.: Nonlinear three-dimensional beam theory for flexible multibody dynamics. Multibody Syst. Dyn. (2014, to appear)

Download references

Acknowledgements

The authors would like to thank the Academy of Finland (Application No. 259543) for supporting Marko K. Matikainen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olivier A. Bauchau.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bauchau, O.A., Han, S., Mikkola, A. et al. Experimental validation of flexible multibody dynamics beam formulations. Multibody Syst Dyn 34, 373–389 (2015). https://doi.org/10.1007/s11044-014-9430-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-014-9430-y

Keywords

Navigation