Skip to main content
Log in

Kinematic oscillations of railway wheelsets

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

We show that Klingel’s classical formula for the frequency of the small kinematic oscillations of railway wheelsets results in a significant error even in the simplest physically relevant cases. The exact 3D nonlinear equations are derived for single-contact-point models of conical wheels and cylindrical rails. We prove that the resulting nonlinear system exhibits periodic motions around steady rolling, which consequently is neutrally stable. The linearised equations provide the proper extension of Klingel’s formula. Our results serve as an essential basis for checking multibody dynamics models and codes used in railway dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ahmadian, M., Yang, S.: Hopf bifurcation and hunting behaviour in a rail wheelset with flange contact. Nonlinear Dyn. 15, 15–30 (1998)

    Article  MATH  Google Scholar 

  2. Ayasse, J.B., Chollet, H.: Wheel–rail contact. In: Iwnicki, S. (ed.) Handbook of Railway Vehicle Dynamics. CRC Press, Boca Raton (2006). Book chapter

    Google Scholar 

  3. Carter, F.W.: On the action of a locomotive driving wheel. Proc. R. Soc. A 112, 151–157 (1926)

    Article  MATH  Google Scholar 

  4. De Pater, A.D.: The equations of motion of a dicone moving on a pair of circular cylinders. Int. J. Non-Linear Mech. 20, 439–449 (1985)

    Article  Google Scholar 

  5. De Pater, A.D.: The geometrical contact between track and wheelset. Veh. Syst. Dyn. 17, 127–140 (1988)

    Article  Google Scholar 

  6. Gantmacher, F.: Lectures in Analytical Mechanics. Mir, Moscow (1975)

    Google Scholar 

  7. Gu-ang, Y., de Pater, A.D.: The determination of the nonlinear motion of a railway vehicle. Veh. Syst. Dyn. 20, 225–239 (1992)

    Article  Google Scholar 

  8. Heumann, H.: Lauf der Drehgestell-Radsatze in der Geraden. Organ Fortschr. Eisenbahnwes. 92, 149–173 (1937)

    Google Scholar 

  9. Hoffmann, M., True, H.: The dynamics of European two-axle railway freight wagons with UIC standard suspension. Veh. Syst. Dyn. 46, 225–236 (2008)

    Article  Google Scholar 

  10. Iwnicki, S.: Simulation of wheel–rail contact forces. Fatigue Fract. Eng. Mater. Struct. 26, 887–900 (2003)

    Article  Google Scholar 

  11. Johnson, K.L.: Contact Mechanics. Cambridge University Press, Cambridge (1985)

    Book  MATH  Google Scholar 

  12. Joly, R.: Etude de la stabilité transversale d’un véhicule ferroviaire. Rev. Franç. Méc. 36, 5–26 (1970)

    Google Scholar 

  13. Kalker, J.J.: Three-Dimensional Elastic Bodies in Rolling Contact. Kluwer Academic, Dordrecht (1990)

    Book  MATH  Google Scholar 

  14. Klingel, J.: Über den Lauf von Eisenbahnwagen auf gerader Bahn. Organ Fortschr. Eisenbahnwes. 38, 113–123 (1883)

    Google Scholar 

  15. Knothe, K.: History of wheel/rail contact mechanics: from Redtenbacher to Kalker. Veh. Syst. Dyn. 46, 9–26 (2008)

    Article  Google Scholar 

  16. Knudsen, C., Feldberg, R., True, H.: Bifurcations and chaos in a model of a rolling railway wheelset. Philos. Trans. R. Soc. Lond. A 338, 455–469 (1992)

    Article  MATH  Google Scholar 

  17. Lewis, A.D.: The geometry of the Gibbs–Appell equations and Gauss’s principle of least constraint. Rep. Math. Phys. 38, 11–28 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  18. Lorant, G., Stepan, G.: The role of non-linearities in the dynamics of a single railway wheelset. Mach. Vib. 5(5), 18–26 (1996)

    Google Scholar 

  19. Murray, R.M., Li, Z., Sastry, S.S.: A Mathematical Introduction to Robotic Manipulation. CRC Press, Boca Raton (1994)

    MATH  Google Scholar 

  20. Ostrowski, J.P., Burdick, J.W., Lewis, A.D., Murray, R.M.: The mechanics of undulatory locomotion: the mixed kinematic and dynamic case. In: Proceedings of the 1995 IEEE International Conference on Robotics and Automation, pp. 1945–1951 (1995)

    Chapter  Google Scholar 

  21. Strogatz, S.H.: Nonlinear Dynamics and Chaos. Perseus Books, New York (1994)

    Google Scholar 

  22. True, H.: On the theory of nonlinear dynamics and its applications in vehicle systems dynamics. Veh. Syst. Dyn. 31, 393–421 (1999)

    Article  Google Scholar 

  23. Vil’ke, V.: The motion of a railway wheelset. J. Appl. Math. Mech. 73, 385–394 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  24. Wickens, A.H.: The dynamic stability of railway vehicle wheelsets and bogies having profiled wheels. Int. J. Solids Struct. 1, 319–341 (1965)

    Article  Google Scholar 

  25. Wickens, A.H.: Fundamentals of Rail Vehicle Dynamics: Guidance and Stability. Swets en Zeitlinger, Lisse (2003)

    Book  Google Scholar 

  26. Wickens, A.H.: A history of railway vehicle dynamics. In: Iwnicki, S. (ed.) Handbook of Railway Vehicle Dynamics. CRC Press, Boca Raton (2006). Book chapter

    Google Scholar 

  27. Wiggins, S.: Introduction to Applied Nonlinear Dynamical Systems and Chaos, 2nd edn. Springer, Berlin (2003)

    MATH  Google Scholar 

  28. Zobory, I.: Prediction of wheel/rail profile wear. Veh. Syst. Dyn. 28, 221–259 (1997)

    Article  Google Scholar 

Download references

Acknowledgements

We thank Professor Istvan Zobory of the Budapest University of Technology and Economics for his advice on the engineering literature. This research was supported by the Hungarian Scientific Research Foundation OTKA under grant no. K101714.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabor Stepan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Antali, M., Stepan, G. & Hogan, S.J. Kinematic oscillations of railway wheelsets. Multibody Syst Dyn 34, 259–274 (2015). https://doi.org/10.1007/s11044-014-9424-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-014-9424-9

Keywords

Navigation