Skip to main content
Log in

Impulsive synchronization motion in networked open-loop multibody systems

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

This paper presents a procedure for studying impulsive synchronization motion in networked open-loop multibody systems formulated by Lagrange dynamics. Impulsive motion occurs when the networked systems are physically subject to either direct or indirect impulsive effects, or when subjected to both simultaneously. The impulsive effects are usually caused by impulsive forces or impulsive constraints. The governing equations of networked open-loop multibody systems are developed from Lagrange formulation. The procedure automatically incorporates a preliminary feedback control and the effects of impulsive constraints through its analysis. Some generic criteria on exponential synchronization of the system output with respect to generalized coordinates and its velocities over, respectively, undirected fixed and switching network topologies, are derived analytically. The procedure shows that impulsive synchronization motion in networked open-loop multibody systems can achieve by impulsive constraints strategies. Two examples and simulations are used to demonstrate and validate the analysis procedure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Spong, M.W., Chopra, N.: Synchronization of networked Lagrangian systems. In: Lagrangian and Hamiltonian Methods for Nonlinear Control. Lecture Notes in Control and Information Sciences, vol. 366, pp. 47–59. Springer, Berlin (2007)

    Chapter  Google Scholar 

  2. Nair, A., Leonard, N.E.: Stable synchronization of mechanical system networks. SIAM J. Control Optim. 47(2), 661–683 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ren, W.: Distributed leaderless consensus algorithms for networked Lagrange systems. Int. J. Control 82(11), 2137–2149 (2009)

    Article  MATH  Google Scholar 

  4. Sbdessameud, A., Tayebi, A.: Synchronization of networked Lagrangian systems with input constraints. In: Preprints of the 18th IFAC, World Congress, Milano, Italy, pp. 2382–2387 (2011)

    Google Scholar 

  5. Chung, S.J., Ahsun, U., Slotine, J.J.E.: Application of synchronization to formation flying spacecraft: Lagrangian approach. J. Guid. Control Dyn. 32(2), 512–526 (2009)

    Article  Google Scholar 

  6. Chung, L.J., Slotine, J.J.E.: Cooperative robot control and concurrent synchronization of Lagrangian systems. IEEE Trans. Robot. 25(3), 686–700 (2009)

    Article  Google Scholar 

  7. Nuño, E., Ortega, R.: Synchronization of networks of non-identical Lagrange systems with uncertain parameters and communication delays. IEEE Trans. Autom. Control 56(4), 935–941 (2011)

    Article  Google Scholar 

  8. Zhao, J., Hill, D.J., Liu, T.: Synchronization of dynamical networks with nonidentical nodes: criteria and control. IEEE Trans. Circuits Syst. I, Regul. Pap. 58(3), 584–594 (2011)

    Article  MathSciNet  Google Scholar 

  9. Zhou, J., Wu, Q.J.: Distributed δ-consensus in directed delayed networks of multi-agents. In: Preprints of the 18th IFAC World Congress, pp. 3304–3309 (2011)

    Google Scholar 

  10. Zhou, J., Wu, Q.J., Xiang, L.: Pinning complex delayed dynamical networks by a single impulsive controller. IEEE Trans. Circuits Syst. 58(12), 2882–2893 (2011)

    Article  MathSciNet  Google Scholar 

  11. Chopra, N., Spong, M.W.: On exponential synchronization of Kuramoto oscillators. IEEE Trans. Autom. Control 52(2), 353–357 (2005)

    MathSciNet  Google Scholar 

  12. Bloch, A.M., Chang, D.E., Leonard, N.E.: Controlled Lagrangians and the stabilization of mechanical systems II: potential shaping. IEEE Trans. Autom. Control 46(10), 1556–1571 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  13. Chung, S.J., Ahsun, U., Slotine, J.J.E.: Application of synchronization to formation flying spacecraft: Lagrangian approach. J. Guid. Control Dyn. 32(2), 512–526 (2009)

    Article  Google Scholar 

  14. Alvarez, J., Rosas, D.: Robust synchronization of arrays of Lagrangian systems. Int. J. Control. Autom. Syst. 8(5), 1039–1047 (2010)

    Article  Google Scholar 

  15. Greenwood, G.T.: Classical Dynamics, pp. 104–123. Prentice-Hall, Englewood Cliffs (1977)

    Google Scholar 

  16. Neimark, I.Y., Fofaev, N.A.: Dynamics of Nonholonomic Systems. American Mathematics Society, Providence (1972)

    MATH  Google Scholar 

  17. Najafabadi, S.A.M., Köecses, J., Angeles, J.: Impacts in multibody systems: modeling and experiments. Multibody Syst. Dyn. 20, 163–176 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. Liu, S.P., Wu, L.C., Lu, Z.: Impact dynamics and control of a flexible dual-arm space robot capturing an object. Appl. Math. Comput. 185, 1149–1159 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  19. Arisumi, H., Chardonnet, J.R.: Dynamic lifting motion of humanoid robots. In: IEEE International Conference on Robotics and Automation, Roma, Italy, pp. 2661–2667 (2007)

    Google Scholar 

  20. Chang, C.C., Liu, C.Q., Huston, R.L.: Dynamics of multibody systems subjected to impulsive constraints. Multibody Syst. Dyn. 8, 161–184 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  21. Chang, C.C., Peng, S.T.: Impulsive motion of multibody systems. Multibody Syst. Dyn. 17, 47–70 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  22. Cortés, J.: Discontinuous dynamical systems: a tutorial on solutions, nonsmooth analysis, and stability. IEEE Control Syst. Mag. 36, 36–73 (2008)

    Article  Google Scholar 

  23. Goebel, R., Sanfelice, R., Teel, A.R.: Hybrid dynamical systems: robust stability and control for systems that combine continuous-time and discrete-time dynamics. IEEE Control Syst. Mag. 29(2), 28–93 (2009)

    Article  MathSciNet  Google Scholar 

  24. Kövecses, J., Cleghorn, W.L.: Finite and impulsive motion of constrained mechanical systems via Jourdain’s principle: discrete and hybrid parameter models. Int. J. Non-Linear Mech. 38, 935–956 (2003)

    Article  MATH  Google Scholar 

  25. Imer, O.C., Yüksel, S., Basar, T.: Optimal control of LTI systems over unreliable communication links. Automatica 42(9), 1429–1439 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  26. Zhang, W., Yu, L.: Stabilization of sampled-data control systems with control inputs missing. IEEE Trans. Autom. Control 55(2), 447–452 (2010)

    Article  Google Scholar 

  27. Hoefler, T., Schneider, T.M., Lumsdaine, A.: The effect of network noise on large-scale collective communications. Parallel Process. Lett. 19(4), 573–593 (2009)

    Article  MathSciNet  Google Scholar 

  28. Kar, S., Moura, J.M.F.: Distributed consensus algorithms in sensor networks with imperfect communication: link failures and channel noise. IEEE Trans. Signal Process. 57(1), 355–369 (2009)

    Article  MathSciNet  Google Scholar 

  29. Li, C., Zhang, J.F.: Mean square average-consensus under measurement noises and fixed topologies: necessary and sufficient conditions. Automatica 45, 1929–1936 (2009)

    Article  MATH  Google Scholar 

  30. Arisumi, H., Yokoi, K.: Casting manipulation-midair control of a gripper by impulsive force. IEEE Trans. Robot. 24(2), 402–415 (2008)

    Article  Google Scholar 

  31. Kang, S.C., Komoriya, K.: Control of impulsive contact force between mobile manipulator and environment using effective mass and damping controls. Int. J. Precis. Eng. Manuf. 11(5), 697–704 (2011)

    Article  Google Scholar 

  32. Haddad, W.M., Hui, Q.: Energy dissipating hybrid control for impulsive dynamical systems. Nonlinear Anal. 65, 3232–3248 (2008)

    Article  MathSciNet  Google Scholar 

  33. Naghshtabrizi, P., Hespanha, J.P., Teel, A.R.: Exponential stability of impulsive systems with application to uncertain sampled-data systems. Syst. Control Lett. 57(5), 378–385 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  34. Gao, Y., Wang, L.: Sampled-data based consensus of continuous-time multi-agent systems with time-varying topology. IEEE Trans. Autom. Control 56(5), 1226–1231 (2011)

    Article  Google Scholar 

  35. Fridman, E.: A refined input delay approach to sampled-data control. Automatica 46(2), 421–427 (2007)

    Article  MathSciNet  Google Scholar 

  36. Zhang, H., Zhou, J.: Synchronization of networked harmonic oscillators with communication delays under local instantaneous interaction. ASME J. Dyn. Syst., Meas. Control 134(6) (2012). doi:10.1115/1.4006365

  37. Hu, L., Bai, T., Shi, P., Wu, Z.: Sampled-data control of networked linear control systems. Automatica 43(5), 903–911 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  38. Ren, W., Cao, Y.: Distributed Coordination of Multi-Agent Networks. Springer, Berlin/Heidelberg (2011)

    Book  MATH  Google Scholar 

  39. Yang, T.: Impulsive Control Theory. Springer, Berlin/Heidelberg (2001)

    MATH  Google Scholar 

  40. Bainov, D.D., Simeonov, P.S.: Impulsive Differential Equations: Periodic Solutions and Applications. Logman Group, Harlow/New York (1993)

    MATH  Google Scholar 

Download references

Acknowledgements

This research is supported by the National Science Foundation of China under Grant Numbers 10972129, 10832006, and 11272191; Specialized Research Foundation for the Doctoral Program of Higher Education under Grant Number 200802800015; Natural Science Program of Anhui Higher Education Institution under Grant Number KJ2010B164. The authors sincerely thank the anonymous reviewers and the associate editor for their valuable comments that have led to the present improved version of the original manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin Zhou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, XJ., Zhou, J., Xiang, L. et al. Impulsive synchronization motion in networked open-loop multibody systems. Multibody Syst Dyn 30, 37–52 (2013). https://doi.org/10.1007/s11044-012-9340-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-012-9340-9

Keywords

Navigation