Skip to main content
Log in

Experimental and numerical study on the temperature-dependent behavior of a fluoro-elastomer

  • Published:
Mechanics of Time-Dependent Materials Aims and scope Submit manuscript

Abstract

The aim of this study is to investigate the mechanical behavior of a fluoro-polymer elastomer in the −8 to 100C temperature range. Several cyclic tension and compression tests and multi-step relaxation tests were performed in order to determine the effects of the temperature on the behavior of the material. The Hyperelasto-Visco-Hysteresis (HVH) phenomenological model was used to account for the thermo-mechanical properties of this material. In this model, which was implemented in the in-house Herezh++ code, three sets of branches stand for different modes of characteristic behavior: the hyperelasticity contribution stands for the reversible elastic phase which occurs at the onset of the loading, the viscosity contribution models the strain rate dependent phase and the hysteresis contribution stands for the irreversible plastic phase. Temperature-dependent parameters were determined using a simplified method based on tension and compression tests interrupted by relaxation steps. The model was found to accurately describe the stress–strain evolution of the elastomer investigated under various mechanical loading conditions at various temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  • Ameduri, B., Boutevin, B., Kostov, G.: Fluoroelastomers: synthesis, properties and applications. Prog. Polym. Sci. 26, 105–187 (2001). doi:10.1016/S0079-6700(00)00044-7

    Article  Google Scholar 

  • Amin, A., Lion, A., Höfer, P.: Effect of temperature history on the mechanical behaviour of a filler-reinforced nr/br blend: literature review and critical experiments. Z. Angew. Math. Mech. 90(5), 347–369 (2010). doi:10.1002/zamm.200900365

    Article  MATH  Google Scholar 

  • Blès, G.: Bases thermomécaniques de la modélisation du comportement des matériaux tissés et des polymères solides. Thèse de doctorat (2002)

  • Chadwick, P.: Thermo-mechanics of rubberlike materials. Philos. Trans. R. Soc. Lond. Ser. A, Math. Phys. Sci. 276(1260), 371–403 (1973)

    Article  Google Scholar 

  • Drozdov, A.: Effect of temperature on the viscoelastic and viscoplastic behavior of polypropylene. Mech. Time-Depend. Mater. 14, 411–434 (2010). doi:10.1007/s11043-010-9118-5

    Article  Google Scholar 

  • Drozdov, A.D., Christiansen, J.: Thermo-viscoplasticity of carbon black-reinforced thermoplastic elastomers. Int. J. Solids Struct. 46(11–12), 2298–2308 (2009). doi:10.1016/j.ijsolstr.2009.01.015

    Article  MATH  Google Scholar 

  • Favier, D.: Contribution à l’étude théorique de l’élastohystérésis à température variable: application aux propriétés de mémoire de forme. Thèse de doctorat d’état (1988)

  • Favier, D., Guélin, P.: A discrete memory constitutive scheme for mild steel type material theory and experiment. Arch. Mech. 37(3), 201–219 (1985)

    Google Scholar 

  • Guélin, P.: Remarques sur l’hystérésis mécanique. J. Méc. Théor. Appl. 19(2), 217–245 (1980)

    MATH  Google Scholar 

  • Guitton, E., Rio, G., Laurent, H.: A new multiaxial loading test for investigating the mechanical behaviour of polymers. Polym. Test. 36, 32–43 (2014). doi:10.1016/j.polymertesting.2014.03.011

    Article  Google Scholar 

  • Herezh++ (2005). http://www-lg2m.univ-ubs.fr/rio, certification iddn-fr-010-0106078-000-r-p-2006-035-20600 edn

  • Holzapfel, G., Simo, J.: A new viscoelastic constitutive model for continuous media at finite thermomechanical changes. Int. J. Solids Struct. 33, 3019–3034 (1996). doi:10.1016/0020-7683(95)00263-4

    Article  MATH  Google Scholar 

  • Khan, A.S., Baig, M., Hamid, S., Zhang, H.: Thermo-mechanical large deformation responses of hydrogenated nitrile butadiene rubber (HNBR): Experimental results. Int. J. Solids Struct. 47(20), 2653–2659 (2010). doi:10.1016/j.ijsolstr.2010.05.012

    Article  MATH  Google Scholar 

  • Laurent, H., Vandenbroucke, A., Rio, G., Hocine, N.A.: A simplified methodology to identify material parameters of a Hyperelasto-Visco-Hysteresis model: application to a fluoro-elastomer. Model. Simul. Mater. Sci. Eng. 085, 004 (2011). doi:10.1088/0965-0393/19/8/085004

    Google Scholar 

  • Lion, A.: A constitutive model for carbon black filled rubber: Experimental investigations and mathematical representation. Contin. Mech. Thermodyn. 8, 153–169 (1996). doi:10.1007/BF01181853

    Article  Google Scholar 

  • Lion, A.: A physically based method to represent the thermo-mechanical behaviour of elastomers. Acta Mech. 123, 1–25 (1996). doi:10.1007/BF01178397

    Article  Google Scholar 

  • Lion, A.: On the large deformation behaviour of reinforced rubber at different temperatures. J. Mech. Phys. Solids 45(11–12), 1805–1834 (1997). doi:10.1016/S0022-5096(97)00028-8

    Article  Google Scholar 

  • Lion, A.: Constitutive modelling in finite thermoviscoplasticity: a physical approach based on nonlinear rheological models. Int. J. Plast. 16(5), 469–494 (2000). doi:10.1016/S0749-6419(99)00038-8

    Article  MATH  Google Scholar 

  • Mahnken, R., Shaban, A., Potente, H., Wilke, L.: Thermoviscoplastic modelling of asymmetric effects for polymers at large strains. Int. J. Solids Struct. 45(17), 4615–4628 (2008). doi:10.1016/j.ijsolstr.2008.03.033

    Article  MATH  Google Scholar 

  • Manach, P.Y., Favier, D., Rio, G.: Finite element simulations of internal stresses generated during the pseudoelastic deformation of NiTi bodies. J. Phys. C 1(6), 244–253 (1996)

    Google Scholar 

  • Martinez, J., Boukamel, A., Méo, S., Lejeunes, S.: Statistical approach for a hyper-visco-plastic model for filled rubber: Experimental characterization and numerical modeling. Eur. J. Mech. A, Solids 30(6), 1028–1039 (2011). doi:10.1016/j.euromechsol.2011.06.013

    Article  MATH  Google Scholar 

  • Mitra, S., Ghanbari-Siahkali, A., Kingshott, P., Almdal, K., Rehmeier, H., Christensen, A.: Chemical degradation of fluoroelastomer in alkaline environment. Polym. Degrad. Stab. 83, 195–206 (2004). doi:10.1016/S0141-3910(03)00235-0

    Article  Google Scholar 

  • Mullins, L.: Softening of rubber by deformations. Rubber Chem. Technol. 42, 339–362 (1969)

    Article  Google Scholar 

  • Pouriayevali, H., Arabnejad, S., Guo, Y., Shim, V.: A constitutive description of the rate-sensitive response of semi-crystalline polymers. Int. J. Impact Eng. 62, 35–47 (2013). doi:10.1016/j.ijimpeng.2013.05.002

    Article  Google Scholar 

  • Rey, T., Chagnon, G., Cam, J.B.L., Favier, D.: Influence of the temperature on the mechanical behaviour of filled and unfilled silicone rubbers. Polym. Test. 32(3), 492–501 (2013). doi:10.1016/j.polymertesting.2013.01.008

    Article  Google Scholar 

  • Rio, G., Manach, P.Y., Favier, D.: Finite element simulation of 3D mechanical behaviour of NiTi shape memory alloys. Arch. Mech. 47(3), 537–556 (1995)

    Google Scholar 

  • Shaw, J.A., Jones, A.S., Wineman, A.S.: Chemorheological response of elastomers at elevated temperatures: Experiments and simulations. J. Mech. Phys. Solids 53, 2758–2793 (2005). doi:10.1016/j.jmps.2005.07.004

    Article  MATH  Google Scholar 

  • SiDoLo: Simulation et Identification Automatique de Lois de Comportement (SiDoLo) (2008). P. Pilvin, User Manual: LIMATB-UBS edn

  • Spetz, G.: Review of test methods for determination of low-temperature properties of elastomers. Polym. Test. 9, 27–37 (1989)

    Article  Google Scholar 

  • Treloar, L.: The Physics of Rubber Elasticity. Clarendon, Oxford (1975)

    Google Scholar 

  • Vandenbroucke, A., Laurent, H., Hocine, N.A., Rio, G.: A Hyperelasto-Visco-Hysteresis model for an elastomeric behaviour: experimental and numerical investigations. Comput. Mater. Sci. 48(3), 495–503 (2010). doi:10.1016/j.commatsci.2010.02.012

    Article  Google Scholar 

  • Wack, B., Terriez, J.M., Guelin, P.: A hereditary type, discrete memory, constitutive equation with applications to simple geometries. Acta Mech. 50(1–2), 9–37 (1983). doi:10.1007/BF01170438

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Brittany Region for providing financial support under the reference “Comportement ThermoMécanique des Elastomères-06007499-07009131-08008174”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Laurent.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Laurent, H., Rio, G., Vandenbroucke, A. et al. Experimental and numerical study on the temperature-dependent behavior of a fluoro-elastomer. Mech Time-Depend Mater 18, 721–742 (2014). https://doi.org/10.1007/s11043-014-9247-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11043-014-9247-3

Keywords

Navigation