Skip to main content
Log in

Genuine reversible data hiding technology using compensation for H.264 bitstreams

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Reversible data hiding technologies have been considered largely impractical because those are, in most cases, applicable to raw video data rather than prevailing compressed data. Even though, many algorithms have been recently developed in the compressed video domain, most of them cannot guarantee the reversibility of cover video due to the lossy characteristics of video compression standards. We suggest completely practical data hiding scheme for H.264 baseline bitstream by achieving genuine reversibility for both I and P frames. Regardless of the data hiding algorithm, the proposed scheme can increase embedding payload by 66.9% and reduce computational complexity by 93%. Also, a novel compensation based difference expansion method with clever coefficient pairing strategy is proposed as a data hiding algorithm and achieved superior embedding payload vs. image quality performance. The proposed algorithm improves payload by 48.9% on average at almost the same video quality distortion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Alattar AM (2004) Reversible watermark using the difference expansion of a generalized integer transform. IEEE Trans Image Process 13(8):1147–1156

    Article  MathSciNet  Google Scholar 

  2. Bouchama S, Aliane H, Hamami L (2013) Reversible data hiding scheme for the H. 264/AVC codec 2013 IEEE international conference on information science and applications (ICISA) , pp 1–4

    Google Scholar 

  3. Chang CC, Lin CC, Tseng CS, Tai WL (2007) Reversible hiding in DCT-based compressed images. Inf Sci 177(13):2768–2786

    Article  Google Scholar 

  4. Chen YH, Huang HC, Lin CC (2016) Block-based reversible data hiding with multi-round estimation and difference alteration. Multimed Tool Appl 75 (21):13679–13704

    Article  Google Scholar 

  5. Chung KL, Huang YH, Chang PC, Liao HYM (2010) Reversible data hiding-based approach for intra-frame error concealment in h. 264/AVC. IEEE Trans Circuits Syst Video Technol 20(11):1643–1647

    Article  Google Scholar 

  6. Fridrich J, Goljan M, Chen Q, Pathak V (2004) Lossless data embedding with file size preservation Electronic imaging 2004 international society for optics and photonics, pp 354–365

    Google Scholar 

  7. Gujjunoori S, Amberker BB (2012) A DCT based reversible data embedding scheme for MPEG-4 video using HVS characteristics ACM proceedings of the 8th Indian conference on computer vision, graphics and image processing, p 74

    Google Scholar 

  8. Hong W, Chen TS, Shiu CW (2009) Reversible data hiding for high quality images using modification of prediction errors. J Syst Softw 82(11):1833–1842

    Article  Google Scholar 

  9. Hu Y, Lee HK, Li J (2009) DE-Based reversible data hiding with improved overflow location map. IEEE Trans Circuits Syst Video Technol 19(2):250–260

    Article  Google Scholar 

  10. Huang HC, Lu YY, Lin J (2016) Ownership protection for progressive image transmission with reversible data hiding and visual secret sharing. Optik-Int J Light Electron Opt 127(15):5950–5960

    Article  Google Scholar 

  11. Hsu CT, Wu JL (1999) Hidden digital watermarks in images. IEEE Trans Image Process 8(1):58–68

    Article  Google Scholar 

  12. Jung SW, Ko SJ (2011) A new histogram modification based reversible data hiding algorithm considering the human visual system. IEEE Signal Process Lett 18 (2):95–98

    Article  MathSciNet  Google Scholar 

  13. Kang SU, Hwang HJ, Kim HJ (2012) Reversible watermark using an accurate predictor and sorter based on payload balancing. ETRI J 34(3):410–420

    Article  Google Scholar 

  14. Li R, Wang R (2013) Video error resilience scheme using reversible data hiding technique for intra-frame in H. 264/AVC 3rd international conference on multimedia technology Atlantis Press (ICMT-13)

    Google Scholar 

  15. Liu H, Shao F, Huang J (2006) A MPEG-2 video watermarking algorithm with compensation in bit stream Digital rights management. Technologies, Issues, Challenges and Systems, Springer Berlin Heidelberg, pp 123–134

    Chapter  Google Scholar 

  16. Liu Y, Ju L, Hu M, Ma X, Zhao H (2015) A robust reversible data hiding scheme for h. 264 without distortion drift. Neurocomputing 151:1053–1062

    Article  Google Scholar 

  17. Lu C-S, Chen J-R, Fan K-C (2005) Real-time frame-dependent video watermarking in VLC domain. Signal Process Image Commun 20:624–642

    Article  Google Scholar 

  18. Ma X, Li Z, Tu H, Zhang B (2010) A data hiding algorithm for h. 264/AVC video streams without intra-frame distortion drift. IEEE Trans Circuits Syst Video Technol 20(10):1320–1330

    Article  Google Scholar 

  19. Mitchell J (1992) Digital compression and coding of continuous-tone still images: Requirements and guidelines. ITU-T Recommendation T, 81

  20. Mobasseri BG, Berger IIRJ, Marcinak MP, NaikRaikar YJ (2010) Data embedding in JPEG bitstream by code mapping. IEEE Trans Image Process 19 (4):958–966

    Article  MathSciNet  MATH  Google Scholar 

  21. Mstafa RJ, Elleithy KM (2016) Compressed and raw video steganography techniques: a comprehensive survey and analysis. Multimedia Tools and Applications, pp 1–38

  22. Muhammad K, Ahmad J, Rehman NU, Jan Z, Sajjad M (2016) CISSKA-LSB: Color image steganography using stego key-directed adaptive LSB substitution method. Multimedia Tools and Applications, pp 1–30

  23. Ni Z, Shi YQ, Ansari N, Su W (2006) Reversible data hiding. IEEE Trans Circuits Syst Video Technol 16(3):354–362

    Article  Google Scholar 

  24. Qian Z, Zhang X (2012) Lossless data hiding in JPEG bitstream. J Syst Softw 85(2):309–313

    Article  Google Scholar 

  25. Qu X, Kim S, Kim HJ (2015) Reversible watermarking based on compensation. J Electr Eng Technol 10(1):422–428

    Article  Google Scholar 

  26. Sachnev V, Kim HJ, Nam J, Suresh S, Shi YQ (2009) Reversible watermarking algorithm using sorting and prediction. IEEE Trans Circuits Syst Video Technol 19(7):989–999

    Article  Google Scholar 

  27. Shahid Z, Puech W (2013) A histogram shifting based RDH scheme for H. 264/AVC with controllable drift IS&T/SPIE electronic imaging international society for optics and photonics, pp 86650S–86650S

    Google Scholar 

  28. Team JV (2003) Advanced video coding for generic audiovisual services. ITU-t Rec H 264:14496–10

    Google Scholar 

  29. Tian J (2003) Reversible data embedding using a difference expansion. IEEE Trans Circuits Syst Video Techn 13(8):890–896

    Article  Google Scholar 

  30. Tourapis AM, Leontaris A, Suhring K, Sullivan G (2009) H.264/14496-10 AVC reference software manual. Doc. JVT-AE010

  31. Tsai YY, Tsai DS, Liu CL (2013) Reversible data hiding scheme based on neighboring pixel differences. Digital Signal Process 23(3):919–927

    Article  MathSciNet  Google Scholar 

  32. Wang K, Lu ZM, Hu YJ (2013) A high capacity lossless data hiding scheme for JPEG images. J Syst Softw 86(7):1965–1975

    Article  Google Scholar 

  33. Xu D, Wang R, Shi YQ (2014) An improved reversible data hiding-based approach for intra-frame error concealment in h. 264/AVC. J Vis Commun Image Represent 25(2):410–422

    Article  Google Scholar 

  34. Xuan G, Shi YQ, Ni Z, Chai P, Cui X, Tong X (2007) Reversible data hiding for JPEG images based on histogram pairs International conference image analysis and recognition. Springer Berlin Heidelberg, pp 715–727

    Chapter  Google Scholar 

Download references

Acknowledgments

This research was supported by Basic Science Research Program through the National Research Foundation(NRF) of Korea funded by the Ministry of Science, ICT & Future Planning (NRF-2015R1C1A1A02037777).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang-ug Kang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, H., Kang, Su. Genuine reversible data hiding technology using compensation for H.264 bitstreams. Multimed Tools Appl 77, 8043–8060 (2018). https://doi.org/10.1007/s11042-017-4698-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-017-4698-6

Keywords

Navigation