Skip to main content
Log in

QoS-aware scalable video streaming using data distribution service

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Enabling Real-Time video streaming over wireless networks is a challenging task due to the time-varying channel conditions and the limited network resources. The instability of wireless networks leads to problems such as limited and time-varying bandwidth, and unexpected traffic congestion when transmitting a burst of video streams. In Real-Time video streaming, each frame must be delivered and decoded by its playback time. Recently, layer coding (LC) has enabled Real-Time and scalable video streaming to clients of heterogeneous capabilities by dropping upper enhancement layers without the need of re-encoding and with much less bit rate. However, layer coding still facing unfair layer protection problem in which packets from the base or lower layers might be dropped while there is a chance to drop packets from the upper enhancement layers. Losing packets from the base layer can significantly affect the delivered video quality and sometimes lead to an interruption especially in error-prone networks as wireless networks. Architectural solutions at the middleware level introduce higher flexibility, more efficiency in development time and more QoS control. This work investigates the behavior of video streaming over Real-Time publish-subscribe based middleware. We propose and develop an unequal layer protection mechanism for Real-Time video streaming based on the Data Distribution Service (DDS) middleware. A combination of video quality of service (QoS) is proposed to adapt the video transmission to the time-varying network changes. The performance of Real-Time video streaming is measured over IEEE 802.11 g WLAN network. The results show a graceful degradation of video quality while maintaining a robust video streaming free of visible error or interruptions. This is due to the intentionally dropping of some enhancement video stream layers in order to protect lower layers, and therefore maintain a continuous video flow of acceptable quality. Numerical results indicate that the proposed scheme is able to achieve higher throughput and improve the average received video quality especially in a large number of video subscribers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  1. “ffmpeg.” [Online]. Available: http://www.videolan.org/developers/x264.html=0pt

  2. “opencv.” [Online]. Available: http://opencv.org/=0pt

  3. “x264.” [Online]. Available: http://www.videolan.org/developers/x264.html=0pt

  4. AL-Suhail GA, Wakamiya N, Fyath RS (2006) Error-Resilience of TCP-Friendly Video Transmission over Wireless Channel, 2006. ICARCV ‘06. 9th International Conference on Control, Automation, Robotics and Vision, pp 1–6, 5–8 Dec. 2006. doi:10.1109/ICARCV.2006.345147

  5. Atzori L, Ginesu G, Floris A, Giusto DD (2012) Rate control based on reduced-reference image quality estimation for streaming video over wireless channels, 2012 IEEE International Conference on Communications (ICC), pp 2021–2025, 10–15 June 2012. doi:10.1109/ICC.2012.6364029

  6. Chen C-M, Lin C-W, Wei H-C, Chen Y-C (2007) Robust video streaming over wireless LANs using multiple description transcoding and prioritized retransmission. J Vis Commun Image Represent 18(3):191–206

    Article  Google Scholar 

  7. Chen H-L, Lee P-C, Hu S-H (2008) Improving Scalable Video Transmission over IEEE 802.11e through a Cross-Layer Architecture, 2008. ICWMC ‘08. The Fourth International Conference on Wireless and Mobile Communications, pp 241–246. doi:10.1109/ICWMC.2008.35

  8. Chen M, Zakhor A (2004) Rate control for streaming video over wireless, INFOCOM 2004. Twenty-third Annual Joint Conference of the IEEE Computer and Communications Societies, vol 2, pp 1181–1190, 7–11 March 2004. doi:10.1109/INFCOM.2004.1357004

  9. Chen M, Zakhor A (2005) Rate control for streaming video over wireless. Wirel Commun IEEE 12(4):32–41

    Article  Google Scholar 

  10. Clavijo J, Segarra M, Baeza C, Moreno C, Sanz R, Jimnez A, Vzquez R, Daz F, Dez A (2001) Real-time video for distributed control systems. Eng Pract 9:459–466

  11. Cranley N, Davis M (2006) Study of the Behaviour of Video Streaming over IEEE 802.11b WLAN Networks, 2006. (WiMob‘2006). IEEE International Conference on Wireless and Mobile Computing, Networking and Communications, pp 349–355, 19–21 June 2006. doi:10.1109/WIMOB.2006.1696356

  12. Detti A, Loreti P, Blefari-Melazzi N, Fedi F (2010) Streaming H.264 scalable video over data distribution service in a wireless environment, Proceeding of IEEE International Symposium on a World of Wireless, Mobile and Multimedia Networks, pp 1–3

  13. Fallah Y, Mansour H, Khan S, Nasiopoulos P, Alnuweiri H (2008) A link adaptation scheme for efficient transmission of H. 264 scalable video over multirate WLANs. Syst Video 18(7):875–887

  14. Floyd S, Handley M, Padhye J, Widmer J (2000) Equation-based congestion control for unicast applications. In Proceedings of the conference on Applications, Technologies, Architectures, and Protocols for Computer Communication (SIGCOMM ‘00). ACM, New York, NY, USA, 43–56. doi:10.1145/347059.347397

  15. GarciÌa-Valls M, Basanta-Val P, EsteÌ vez-Ayres I (2010) Adaptive real-time video transmission over DDS, 2010 8th IEEE International Conference on Industrial Informatics (INDIN), pp 130–135, 13–16 July 2010. doi:10.1109/INDIN.2010.5549450

  16. Henning M, Spruiell M (2003) Distributed programming with ice. ZeroC Inc. Revision 3

  17. Hong Y-S, Lim H-S, Hong J-S (2008) A Cost Effective Rate Control for Streaming Video Dedicated to Wireless Handheld Devices, 2008. MUE 2008. International Conference on Multimedia and Ubiquitous Engineering, pp 537–542, 24–26 April 2008. doi:10.1109/MUE.2008.21

  18. Huang H-C, Peng W-H, Chiang T, Hang H-M (2007) Advances in the scalable amendment of H.264/AVC. IEEE Commun Mag 45(1):68–76

    Article  Google Scholar 

  19. Huang Y, Mao S, Midkiff S (2009) A control-theoretic approach to rate control for streaming videos. IEEE Trans Multimedia 11(6):1072–1081

    Article  Google Scholar 

  20. Ji G, Liang B (2009) Stochastic Rate Control for Scalable VBR Video Streaming over Wireless Networks, Global Telecommunications Conference, 2009. GLOBECOM 2009. IEEE, pp 1–6. doi:10.1109/GLOCOM.2009.5425897

  21. Jiang T, Wang H, Vasilakos AV (2012) QoE-driven channel allocation schemes for multimedia transmission of priority-based secondary users over cognitive radio networks. IEEE J Sel Areas Commun 30(7):1215–1224

    Article  Google Scholar 

  22. Joshi R (2006) Building effective Real-Time distributed publish-subscribe framework part 1, Real-Time Innovations, 2006, [Online]. Available: https://www.rti.com/resources/articles.html. Accessed March 2015

  23. Karimi O, Fathy M (2010) Adaptive end-to-end QoS for multimedia over heterogeneous wireless networks. Comput Electr Eng i:160–167

    MATH  Google Scholar 

  24. Ke C-H, Shieh C-K, Hwang W-S, Ziviani A (2008) An evaluation framework for more realistic simulations of MPEG video transmission. J Inf Sci Eng 24(2):425–440

  25. Le Feuvre J, Concolato C, Moissinac J-C (2007) GPAC: open source multimedia framework. In Proceedings of the 15th international conference on Multimedia (MULTIMEDIA ‘07). ACM, New York, NY, USA, 1009–1012. doi:10.1145/1291233.1291452

  26. Le TA, Nguyen H, Zhang H (2010) EvalSVC—An evaluation platform for scalable video coding transmission, 2010 IEEE 14th International Symposium on Consumer Electronics (ISCE), pp 1–6, 7–10 June 2010. doi:10.1109/ISCE.2010.5523712

  27. Lee C, Song K, Joo Y, Kim Y (2008) Adaptive rate control for real-time video streaming over the mobile WiMAX, 2008. APCCAS 2008. IEEE Asia Pacific Conference on Circuits and Systems, pp 1454–1457. doi:10.1109/APCCAS.2008.4746305

  28. Lei Z, Georganas ND (2005) Adaptive video transcoding and streaming over wireless channels. J Syst Softw 75(3):253–270

    Article  Google Scholar 

  29. Li M, Chen Z, Tan Y-P (2011) Cross-layer optimization for SVC video delivery over the IEEE 802.11e wireless networks. J Vis Commun Image Represent 22(3):284–296

    Article  Google Scholar 

  30. Luo H, Ci S, Wu D, Tang H (2010) End-to-end optimized TCP-friendly rate control for real-time video streaming over wireless multi-hop networks. J Vis Commun Image Represent 21(2):98–106

    Article  Google Scholar 

  31. Luo H, Wu D, Ci S, Argyriou A, Wang H (2008) Quality-Driven TCP Friendly Rate Control for Real-Time Video Streaming, 2008. IEEE GLOBECOM 2008. IEEE Global Telecommunications Conference, pp 1–5. doi:10.1109/GLOCOM.2008.ECP.969

  32. Luo H, Wu D, Ci S, Sharif H, Tang H (2009) TFRC-based rate control for real-time video streaming over wireless multi-hop mesh networks, 2009 I.E. International Conference on Communications, pp 1–5

  33. Maione G, Striccoli D (2012) Transmission control of Variable-Bit-Rate video streaming in UMTS networks. Control Eng Pract 20(12):1366–1373

    Article  Google Scholar 

  34. Mansour H, Fallah Y, Nasiopoulos P, Krishnamurthy V (2009) Dynamic resource allocation for MGS H. 264/AVC video transmission over link-adaptive networks. IEEE Multimedia 11(8):1478–1491

    Article  Google Scholar 

  35. Markopoulou A, Setton E, Kalman M, Apostolopoulos J (2004) WiSE video: using in-band wireless loss notification to improve rate-controlled video streaming, 2004. ICME ‘04. 2004 IEEE International Conference on Multimedia and Expo, vol. 1, pp 249–252, 27–30 June 2004. doi:10.1109/ICME.2004.1394172

  36. Mastouri MA, Hasnaoui S (2007) Performance of a publish/subscribe middleware for the real-time distributed control systems. Comput Sci Netw Secur 7(1):313–319

    Google Scholar 

  37. Oh S, Kim J-H, Fox G (2010) Real-time performance analysis for publish/subscribe systems. Futur Gener Comput Syst 26(3):318–323. doi:10.1016/j.future.2009.09.001

    Article  Google Scholar 

  38. OMG (2007) Data Distribution Services (DDS), 1.1.2007. [Online]. Available: http://www.omg.org/spec/DDS/. Accessed March 2015

  39. Pyun J-Y, Choi H-J (2008) TCP-Friendly Congestion Control for Streaming Video Service over Wireless Overlay Network, 2008. ICC Workshops ‘08. IEEE International Conference on Communications Workshops, pp 47–51, 19–23 May 2008. doi:10.1109/ICCW.2008.14

  40. Radakovic D, Ansari R, Yao Y, Yellapantula R (2009) Priority-aware transfer of SVC encoded video over MIMO communications system, Picture Coding Symposium, 2009. PCS 2009, pp 1–4, 6–8 May 2009. doi:10.1109/PCS.2009.5167444

  41. Reichel J, Schwarz H, Wien M (2007) Joint Scalable Video Model JSVM-12 text, Doc. JVT-Y202, Joint Video Team (JVT) of ISO/IEC MPEG & ITU-T VCEG, Shenzhen, China

  42. Rodrigues C, Krishnamurthy Y, Pyarali I, Schmidt DC (2001) Application of the QuO quality-of-service framework to a distributed video application, 2001. DOA ‘01. Proceedings. 3rd International Symposium on Distributed Objects and Applications, pp 299–308. doi:10.1109/DOA.2001.954095

  43. Rostami V, Ebrahimijam S, Sojodishijani O (2007) Real-time distributed control system for navigating omnidirectional soccer robot, 2007. MED ‘07. Mediterranean Conference on Control & Automation, pp 1–4, 27–29 June 2007. doi:10.1109/MED.2007.4433853

  44. RTI, RTI Connext (2012) Core Library and Utilities User’s Manual, Real-Time Innovations. [Online]. Available: https://www.rti.com/resources/articles.html. Accessed March 2015

  45. Schierl T, Hellge C, Mirta S, Gruneberg K, Wiegand T (2007) Using H.264/AVC-based Scalable Video Coding (SVC) for Real Time Streaming in Wireless IP Networks, 2007. ISCAS 2007. IEEE International Symposium on Circuits and Systems, pp 3455–3458, 27–30 May 2007

  46. Schierl T, Schwarz H, Marpe D, Wiegand T (2005) Wireless Broadcasting Using the Scalable Extension of H. 264/AVC, 2005. ICME 2005. IEEE International Conference on Multimedia and Expo, pp 884, 887, 6–8 July 2005. doi:10.1109/ICME.2005.1521565

  47. Schwarz H, Marpe D, Wiegand T (2007) Overview of the scalable video coding extension of the H.264/AVC Standard. IEEE Trans Circuits Syst Video Technol 17(9):1103–1120

  48. Song D, Chen CW (2008) Maximum-throughput delivery of SVC-based video over MIMO systems with time-varying channel capacity. J Vis Commun Image Represent 19(8):520–528

    Article  MathSciNet  Google Scholar 

  49. Tong X, Gao W, Huang Q (2004) A novel rate control scheme for video streaming over wireless networks, 2004 IEEE First Symposium on Multi-Agent Security and Survivability, pp 369–372, 18–20 Dec 2004. doi:10.1109/ICIG.2004.21

  50. Wang C-H, Chang R-I, Ho J-M, Hsu S-C (2003) Rate-sensitive ARQ for real-time video streaming, 2003. GLOBECOM ‘03. IEEE Global Telecommunications Conference, vol. 6, pp 3361–3365, 1–5 Dec. 2003. doi:10.1109/GLOCOM.2003.1258858

  51. Wang Y, Chau L-P, Yap K-H (2010) Bit-rate allocation for broadcasting of scalable video over wireless networks. IEEE Trans Broadcast 56(3):288–295

  52. Wang Y, Wenger S, Wen J, Katsaggelos AK (2000) Error resilient video coding techniques. IEEE Signal Process Mag 17(4):61–82. doi:10.1109/79.855913

    Article  Google Scholar 

  53. Wang Y, Zhu Q-F (1998) Error control and concealment for video communication: a review. Proc IEEE 86(5):974–997

    Article  Google Scholar 

  54. Wiegand T, Sullivan GJ, Bjontegaard G, Luthra A (2003) Overview of the H.264/AVC video coding standard. IEEE Trans Circuits Syst Video Technol 13(7):560–576. doi:10.1109/TCSVT.2003.815165

  55. Xiaogang Y, JiQiang L, Ning L (2007) Congestion Control Based on Priority Drop for H.264/SVC, 2007. MUE ‘07. International Conference on Multimedia and Ubiquitous Engineering, pp 585–589, 26–28 April 2007. doi:10.1109/MUE.2007.107

  56. Xiaolin M, Fangmin L, Fei H, Xinhua L (2012) A hybrid channel assignment strategy to QoS support of video streaming over multi-channel ad hoc networks. J Syst Softw 85(2):300–308. doi:10.1016/j.jss.2011.08.016

  57. Yu H-B, Yu S, Wang C (2004) highly efficient, low delay architecture for transporting H.264 video over wireless channel,”. Signal Process Image Commun 19(4):369–385

    Article  Google Scholar 

  58. Zhang X, Huang M (2009) Error Resilient Transcoding for Wireless Video Transmission, 2009. WNIS ‘09. International Conference on Wireless Networks and Information Systems, pp 286–289, 28–29 Dec. 2009. doi:10.1109/WNIS.2009.39

  59. Zhang H, Zheng Y, Khojastepour M, Rangarajan S (2010) Cross-layer optimization for streaming scalable video over fading wireless networks. IEEE J Sel Areas in Commun 28(3):344–353

    Article  Google Scholar 

  60. Zhou L, Wang H, Lian S, Zhang Y, Vasilakos A, Weiping J (2011) Availability-aware multimedia scheduling in heterogeneous wireless networks. IEEE Trans Veh Technol 60(3):1161–1170

    Article  Google Scholar 

  61. Zhou L, Zhang Y, Song K, Weiping J, Vasilakos AV (2011) Distributed media services in P2P-based vehicular networks. IEEE Trans Veh Technol 60(2):692–703

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anas Al-Roubaiey.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Almadani, B., Alsaeedi, M. & Al-Roubaiey, A. QoS-aware scalable video streaming using data distribution service. Multimed Tools Appl 75, 5841–5870 (2016). https://doi.org/10.1007/s11042-015-2551-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-015-2551-3

Keywords

Navigation