Skip to main content
Log in

Game-Theoretic Joint Power Allocation and Beamforming for Cognitive MIMO Systems with Finite Feedback

  • Published:
Mobile Networks and Applications Aims and scope Submit manuscript

Abstract

In the paper, we consider the imperfect channel state information (CSI) in practical cognitive MIMO systems. We first analyze the feedback of quantified CSI from the primary user (PU) and propose a joint power allocation and beamforming algorithm via game theory. Compared with the game under the condition of perfect CSI, new utility function and cost function are constructed under imperfect CSI. We analyze the error introduced from the uniformly quantified CSI and obtain new constraints. Besides, existence of the Nash equilibrium in case of both perfect CSI and imperfect CSI are proven. We propose a new iterative algorithm to reach the Nash equilibrium (NE). Simulation results show that the proposed algorithm can converge quickly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Federal Communications Commission (2003) Facilitating opportunities for flexible, efficient, and reliable spectrum use employing cognitive radio technologies. Notice of Proposed Rule Making and Order FCC 03–322

  2. Mitola J, Maguire GQ (1999) Cognitive radio: making software radios more personal. IEEE Pers Commun 6(4):13–18

    Article  Google Scholar 

  3. Gesbert D, Shafi M, Shiu D, Smith PJ, Naguib A (2003) From theory to practice: an overview of MIMO space-time coded wireless systems. IEEE J Select Areas Commun 21(3):281–302

    Article  Google Scholar 

  4. Scutari G, Palomar DP, Barbarossa S (2008) Cognitive MIMO radio. IEEE Signal Process Mag 25(6):46–59

    Article  Google Scholar 

  5. Rashid F, Liu KJR, Tassiulas L (1998) Transmit beamforming and power control for celluar wireless systems. IEEE J Select Areas Commun 16(8):1437–1450

    Article  Google Scholar 

  6. Rashid F, Tassiulas L, Liu KJR (1998) Joint optimal power control and beamforming in wireless networks using antenna arrays. IEEE Trans Commun 46(10):1313–1324

    Article  Google Scholar 

  7. Zhang R, Chai C, Liang Y (2009) Joint beamforming and power control for multiantenna relay broadcast channel with QoS constraints. IEEE Trans Signal Process 57(2):726–737

    Article  MathSciNet  Google Scholar 

  8. Zhang L, Liang Y, Xin Y (2008) Joint beamforming and power allocation for multiple access channels in cognitive radio networks. IEEE J Select Areas Commun 2(1):38–51

    Article  Google Scholar 

  9. Islam MH, Liang Y, Hoang AT (2008) Joint power control and beamforming for cognitive radio networks. IEEE Trans Wirel Commun 7(7):2415–2419

    Article  Google Scholar 

  10. Zhang R, Liang Y (2009) Exploiting multi-antennas for opportunistic spectrum sharing in cognitive radio networks. IEEE J Select Top Signal Process 2(1):88–102

    Article  Google Scholar 

  11. Tang J, Lambotharan S (2011) Beamforming and temporal power optimisation for an overlay cognitive radio relay network. IET Signal Process 5(6):582–588

    Article  MathSciNet  Google Scholar 

  12. Jung M, Hwang K, Choi S (2011) Interference minimization approach to precoding scheme in MIMO-based cognitive radio networks. IEEE Commun Lett 15(8):789–791

    Article  Google Scholar 

  13. Zhang L, Liang Y, Xin Y, Vincent PH (2009) Robust cognitive beamforming with partial channel state information. IEEE Trans Commun 8(9):4143–4153

    Google Scholar 

  14. Du H, Ratnarajah T, Pesavento M, Papadias CB (2012) Joint transceiver beamforming in MIMO cognitive radio network via second-order cone programming. IEEE Trans Signal Process 60(2):781–792

    Article  MathSciNet  Google Scholar 

  15. Huang K, Zhang R (2011) Cooperative feedback for multiantenna cognitive radio networks. IEEE Trans Signal Process 59(2):747–758

    Article  MathSciNet  Google Scholar 

  16. Goodman D (2001) Network assisted power control for wireless data. Mob Netw Appl 6(5):409–415

    Article  MATH  Google Scholar 

  17. Saraydar CU, Mandayam NB, Goodman D (2002) Efficient power control via pricing in wireless data networks. IEEE Trans Commun 50(2):291–303

    Article  Google Scholar 

  18. Scutari G, Palomar DP (2010) MIMO cognitive radio: a game theoretical approach. IEEE Trans Signal Process 58(2):761–780

    Article  MathSciNet  Google Scholar 

  19. Zhao F, Lv X, Chen H (2013) A leakage-based beamforming algorithm for cognitive MIMO systems via game theory. J Networks 8(3):623–627

    Article  Google Scholar 

  20. Zhao F, Zhang J, Chen H (2013) Joint beamforming and power allocation for multiple primary users and secondary users in cognitive MIMO systems via game theory. KSII Trans Internet Inf Syst 7(6):1379–1397

    Article  Google Scholar 

  21. Nguyen DN, Krunz M (2013) Power minimization in MIMO cognitive networks using beamforming games. IEEE J Select Areas Commun 31(5):916–925

    Article  Google Scholar 

  22. Zhao F, Li B, Chen H (2013) Joint beamforming and power allocation for cognitive MIMO systems under imperfect CSI based on game theory. Wirel Pers Commun 73(3):679–694

    Article  MathSciNet  Google Scholar 

  23. Wang J, Scutari G, Palomar DP (2011) Robust MIMO cognitive radio via game theory. IEEE Trans Signal Process 59(3):1183–1195

    Article  MathSciNet  Google Scholar 

  24. Song L, Han Z, Zhang Z, Jiao B (2012) Non-cooperative feedback rate control game for channel state information in wireless networks. IEEE J Select Areas Commun 30(1):188–197

    Article  Google Scholar 

  25. Larsson EG, Jorswieck EA (2008) Competition versus cooperation on the MISO interference channel. IEEE J Select Areas Commun 26(7):1059–1069

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Natural Science Foundation of China (61162008, 61172055), the Guangxi Natural Science Foundation (2013GXNSFGA019004), the Key Project of Chinese Ministry of Education (212131), the Foundation of Department of Education of Guangxi Province (201202ZD045), the Open Research Fund of Guangxi Key Lab of Wireless Wideband Communication & Signal Processing (12103, 12106), the Director Fund of Key Laboratory of Cognitive Radio and Information Processing (Guilin University of Electronic Technology), Ministry of Education, China (2013ZR02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongbin Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, F., Wang, C., Chen, H. et al. Game-Theoretic Joint Power Allocation and Beamforming for Cognitive MIMO Systems with Finite Feedback. Mobile Netw Appl 19, 512–521 (2014). https://doi.org/10.1007/s11036-014-0500-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11036-014-0500-4

Keywords

Navigation