Skip to main content
Log in

Chidamide alleviates TGF-β-induced epithelial–mesenchymal transition in lung cancer cell lines

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Transforming growth factor-β (TGF-β)-induced epithelial–mesenchymal transition is a critical process in the initiation of metastasis of various types of cancer. Chidamide is a class I histone deacetylase inhibitor with anti-tumor activity. This study investigated the effects of chidamide on TGF-β-mediated suppression of E-cadherin expression in adenocarcinomic lung epithelial cells and the molecular mechanisms involved in these effects. Western blot analysis, confocal microscopy, Quantitative methyl-specific PCR and bisulfite sequencing were used to evaluate the effects of different treatments on chidamide ameliorating TGF-β induced-E-cadherin loss. H3 acetylation binding to the promoter of E-cadherin was detected by chromatin immunoprecipitations (CHIP). We found that chidamide reduced the level of lung cancer cell migration observed using a Boyden chamber assay (as an indicator of metastatic potential). Chidamide inhibited TGF-β-induced SMAD2 phosphorylation and attenuated TGF-β-induced loss of E-cadherin expression in lung cancer cells by Western blotting and confocal microscopy, respectively. Quantitative methyl-specific PCR and bisulfite sequencing revealed that TGF-β-enhanced E-cadherin promoter methylation was ameliorated in cells treated with chidamide. We demonstrated that histone H3 deacetylation within the E-cadherin promoter was required for TGF-β-induced E-cadherin loss; cell treatment with chidamide increased the H3 acetylation detected by CHIP. Taken together, our results demonstrate that TGF-β suppressed E-cadherin expression by regulating promoter methylation and histone H3 acetylation. Chidamide significantly enhanced E-cadherin expression in TGF-β-treated cells and inhibited lung cancer cell migration. These findings indicate that chidamide has a potential therapeutic use due to its capacity to prevent cancer cell metastasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Jeon HS, Jen J (2010) TGF-beta signaling and the role of inhibitory Smads in non-small cell lung cancer. J Thorac Oncol 5:417–419

    Article  PubMed  PubMed Central  Google Scholar 

  2. Lamouille S, Xu J, Derynck R (2014) Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol 15:178–196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ropero S, Esteller M (2007) The role of histone deacetylases (HDACs) in human cancer. Mol Oncol 1:19–25

    Article  CAS  PubMed  Google Scholar 

  4. Falkenberg KJ, Johnstone RW (2014) Histone deacetylases and their inhibitors in cancer, neurological diseases and immune disorders. Nat Rev Drug Discov 13:673–691

    Article  CAS  PubMed  Google Scholar 

  5. Witta SE, Gemmill RM, Hirsch FR, Coldren CD, Hedman K, Ravdel L, Helfrich B, Dziadziuszko R, Chan DC, Sugita M, Chan Z, Baron A, Franklin W, Drabkin HA, Girard L, Gazdar AF, Minna JD, Bunn PA Jr (2006) Restoring E-cadherin expression increases sensitivity to epidermal growth factor receptor inhibitors in lung cancer cell lines. Cancer Res 66:944–950

    Article  CAS  PubMed  Google Scholar 

  6. Neal JW, Sequist LV (2012) Complex role of histone deacetylase inhibitors in the treatment of non-small-cell lung cancer. J Clin Oncol 30:2280–2282

    Article  CAS  PubMed  Google Scholar 

  7. Wang H, Guo Y, Fu M, Liang X, Zhang X, Wang R, Lin C, Qian H (2012) Antitumor activity of chidamide in hepatocellular carcinoma cell lines. Mol Med Rep 5:1503–1508

    CAS  PubMed  Google Scholar 

  8. Yang CT, Li JM, Weng HH, Li YC, Chen HC, Chen MF (2010) Adenovirus-mediated transfer of siRNA against survivin enhances the radiosensitivity of human non-small cell lung cancer cells. Cancer Gene Ther 17:120–130

    Article  CAS  PubMed  Google Scholar 

  9. Cheng YW, Wu MF, Wang J, Yeh KT, Goan YG, Chiou HL, Chen CY, Lee H (2007) Human papillomavirus 16/18 E6 oncoprotein is expressed in lung cancer and related with 53 inactivation. Cancer Res 67:10686–10693

    Article  CAS  PubMed  Google Scholar 

  10. Hsin IL, Sheu GT, Chen HH, Chiu LY, Wang HD, Chan HW, Hsu CP, Ko JL (2010) N-acetyl cysteine mitigates curcumin-mediated telomerase inhibition through rescuing of Sp1 reduction in A549 cells. Mutat Res 688:72–77

    Article  CAS  PubMed  Google Scholar 

  11. Hiraki M, Kitajima Y, Sato S, Mitsuno M, Koga Y, Nakamura J, Hashiguchi K, Noshiro H, Miyazaki K (2010) Aberrant gene methylation in the lymph nodes provides a possible marker for diagnosing micrometastasis in gastric cancer. Ann Surg Oncol 17:1177–1186

    Article  PubMed  Google Scholar 

  12. Xu J, Lamouille S, Derynck R (2009) TGF-β-induced epithelial to mesenchymal transition. Cell Res 19:156–172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Strathdee G (2002) Epigenetic versus genetic alterations in the inactivation of E-cadherin. Semin Cancer Biol 12:373–379

    Article  CAS  PubMed  Google Scholar 

  14. Glozak MA, Seto E (2007) Histone deacetylases and cancer. Oncogene 26:5420–5432

    Article  CAS  PubMed  Google Scholar 

  15. Espada J, Peinado H, Lopez-Serra L, Setien F, Lopez-Serra P, Portela A, Renart J, Carrasco E, Calvo M, Juarranz A, Cano A, Esteller M (2011) Regulation of SNAIL1 and E-cadherin function by DNMT1 in a DNA methylation-independent context. Nucleic Acids Res 39:9194–9205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bradley EW, Carpio LR, Westendorf JJ (2013) Histone deacetylase 3 suppression increases PH domain and leucine-rich repeat phosphatase (Phlpp) 1 expression in chondrocytes to suppress Akt signaling and matrix secretion. J Biol Chem 288:9572–9582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Nagathihalli NS, Massion PP, Gonzalez AL, Lu P, Datta PK (2012) Smoking induces epithelial-to-mesenchymal transition in non-small cell lung cancer through HDAC-mediated downregulation of E-cadherin. Mol Cancer Ther 11:2362–2372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Peinado H, Ballestar E, Esteller M, Cano A (2004) Snail mediates E-cadherin repression by the recruitment of the Sin3A/histone deacetylase 1 HDAC1/HDAC2 complex. Mol Cell Biol 24:306–319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Pruitt K, Zinn RL, Ohm JE, McGarvey KM, Kang SH, Watkins DN, Herman JG, Baylin SB (2006) Inhibition of SIRT1 reactivates silenced cancer genes without loss of promoter DNA hypermethylation. PLoS Genet 2:e40

    Article  PubMed  PubMed Central  Google Scholar 

  20. You JS, Kang JK, Lee EK, Lee JC, Lee SH, Jeon YJ, Koh DH, Ahn SH, Seo DW, Lee HY, Cho EJ, Han JW (2008) Histone deacetylase inhibitor apicidin downregulates DNA methyltransferase 1 expression and induces repressive histone modifications via recruitment of corepressor complex to promoter region in human cervix cancer cells. Oncogene 27:1376–1386

    Article  CAS  PubMed  Google Scholar 

  21. Janda E, Nevolo M, Lehmann K, Downward J, Beug H, Grieco M (2006) Raf plus TGF-β-dependent EMT is initiated by endocytosis and lysosomal degradation of E-cadherin. Oncogene 25:7117–7130

    Article  CAS  PubMed  Google Scholar 

  22. Burk U, Schubert J, Wellner U, Schmalhofer O, Vincan E, Spaderna S, Brabletz T (2008) A reciprocal repression between ZEB1 and members of the miR-200 family promotes EMT and invasion in cancer cells. EMBO Rep 9:582–589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wu CH, Tang SC, Wang PH, Lee H, Ko JL (2012) Nickel-induced epithelial-mesenchymal transition by reactive oxygen species generation and E-cadherin promoter hypermethylation. J Biol Chem 287:25292–25302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Dunn LK, Mohammad KS, Fournier PG, McKenna CR, Davis HW, Niewolna M, Peng XH, Chirgwin JM, Guise TA (2009) Hypoxia and TGF-β drive breast cancer bone metastases through parallel signaling pathways in tumor cells and the bone microenvironment. PLoS One 4:e6896

    Article  PubMed  PubMed Central  Google Scholar 

  25. Dong C, Wu Y, Yao J, Wang Y, Yu Y, Rychahou PG, Evers BM, Zhou BP (2012) G9a interacts with Snail and is critical for Snail-mediated E-cadherin repression in human breast cancer. J Clin Invest 122:1469–1486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This study was supported by Grants from Changhua Christian Hospital of Taiwan (Grant Nos. 101-CCH-IRP-49 and 102-CCH-IRP-004) and the Ministry of Science and Technology of Taiwan (Grant No. 103-2314-B-371-001-MY2). Contract Grant sponsor: Changhua Christian Hospital of Taiwan and Ministry of Science and Technology of Taiwan. Contract Grant Numbers: 101-CCH-IRP-49, 102-CCH-IRP-004, and 103-2314-B-371-001-MY2.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiunn-Liang Ko or Jeremy J. W. Chen.

Additional information

Sheng-Hao Lin and Bing-Yen Wang have equally contributed to this study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 33 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, SH., Wang, BY., Lin, CH. et al. Chidamide alleviates TGF-β-induced epithelial–mesenchymal transition in lung cancer cell lines. Mol Biol Rep 43, 687–695 (2016). https://doi.org/10.1007/s11033-016-4005-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-016-4005-z

Keywords

Navigation