Skip to main content
Log in

Phylogenetic relationship of two popular edible Pleurotus in China, Bailinggu (P. eryngii var. tuoliensis) and Xingbaogu (P. eryngii), determined by ITS, RPB2 and EF1α sequences

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The aims of this study are to assess the utility of the internal transcribed spacer (ITS) region, and partial translation elongation factor (EF1α) and RNA polymerase II (RPB2) genes, for differentiation of Bailinggu, P. eryngii, and P. nebrodensis; to reconstruct phylogenetic relationships between the three species; and to confirm the taxonomic status of Bailinggu based on ribosomal and protein-coding genes. Pairwise genetic distances between Bailinggu, P. eryngii, and related Pleurotus strains were calculated by using the p-distance model, and molecular phylogeny of these isolates was estimated based on ITS, RPB2, and EF1α using maximum parsimony and Bayesian methods. Differences in ITS, RPB2, and EF1α sequences show that Bailinggu, P. eryngii, and P. nebrodensis are distinct at the species level. Phylogenetic analyses reveal that P. eryngii is closer to P. nebrodensis than to Bailinggu. Sequence analyses of ribosomal and protein-coding genes confirm that P. eryngii var. tuoliensis is identical to Bailinggu. P. eryngii var. tuoliensis should be raised to species level or a new name should be introduced for Bailinggu after a thorough investigation into Pleurotus isolates from Ferula in Xinjiang Province. This study helps to resolve uncertainty regarding Bailinggu, P. eryngii and P. nebrodensis, improving the resource management of these strains. ITS, EF1α, and RPB2 sequences can be used to distinguish Bailinggu, P. eryngii and P. nebrodensis as three different species, and P. eryngii var. tuoliensis should be the scientific name for Bailinggu at present.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Mao XL (2000) Agaricales. In: Mao XL (ed) The macrofungi in China. Henan Science and Technology Press, Zhengzhou, pp 64–66

    Google Scholar 

  2. Mao X (2005) Promoting a new development for precious mushroom Pleurotus nebrodensis (in Chinese). China (Guang Shui) Symposium on Standardization Production for Edible Mushroom & Products Fair for Rare Mushroom (Pleurotus nebrodensis), Hubei, China, January 17–18, pp 25–27 (in Chinese)

  3. Zhang J, Huang C, Li C (2005) The cultivars of P. nebrodensis in China. In: Tan Q, Zhang J, Chen M, Cao H, Buswell JA (eds) Mushroom biology and mushroom products, vol 12. Shanghai Xinhua Printing Co., Ltd, Acta Edulis Fungi, Shanghai, pp 350–353

    Google Scholar 

  4. Huang N (1998) Colored illustrations of macrofungi (mushrooms) of China. China Agricultural Press, Beijing, p 96 (in Chinese)

    Google Scholar 

  5. Kawai G, Babasaki K, Neda H (2008) Taxonomic position of a Chinese Pleurotus ‘‘Bailinggu’’: it belongs to Pleurotus eryngii (DC.: Fr.) Quél. and evolved independently in China. Mycoscience 49:75–87

    Article  CAS  Google Scholar 

  6. Zhao M, Huang C, Chen Q, Wu X, Qu J, Zhang J (2013) Genetic variability and population structure of the mushroom Pleurotus eryngii var. tuoliensis. PLoS ONE 8:e83253

    Article  PubMed  PubMed Central  Google Scholar 

  7. Jia SM, Qin M (2006) Domestication and cultivation of Pleurotus nebrodensis in China. Edible Fungi China 25:3–7 (in Chinese)

    Google Scholar 

  8. Xu ML (2010) Sexual distant-crossbreeding between P. eryngii and P. nebrodensis. Master’s Thesis, Fujian Agriculture and Forestry University

  9. Li GX, Shao SG, Li YJ (2004) Effects of different hormones on growth and yield of Pleurotus eryngii var. nebrodensis. Edible Fungi of China 23:37–38

    Google Scholar 

  10. Xu JY (2010) The preliminary study on the structure of A mating type loci in Pleurotus eryngii var. nebrodensis and Pleurotus eryngii var. ferulae. Master’s Thesis, Huazhong Agricultural University

  11. Mou C, Cao Y, Ma J (1987) A new variety of Pleurotus eryngii and its cultural characters. Acta Mycol Sin 6:153–156 (in Chinese)

    Google Scholar 

  12. Zhang JX, Huang CY, Ng TB, Wang HX (2006) Genetic polymorphism of ferula mushroomgrown on Ferula sinkiangensis. Appl Microbiol Biotechnol 71:304–309

    Article  CAS  PubMed  Google Scholar 

  13. Bao D, Kinugasa S, Kitamoto Y (2004) The biological species of oyster mushrooms (Pleurotus spp.) from Asia based on mating compatibility tests. J Wood Sci 50:162–168

    Google Scholar 

  14. Bao D, Ishihara H, Mori N, Kitamoto Y (2004) Phylogenetic analysis of oyster mushrooms (Pleurotus spp.) based on restriction fragment length polymorphisms of the 5′ portion of 26S rDNA. J Wood Sci 50:169–176

    CAS  Google Scholar 

  15. Ro HS, Kim SS, Ryu JS, Jeon CO, Lee TS, Lee HS (2007) Comparative studies on the diversity of the edible mushroom Pleurotus eryngii: ITS sequence analysis, RAPD fingerprinting, and physiological characteristics. Mycol Res 111:710–715

    Article  CAS  PubMed  Google Scholar 

  16. Rodriguez Estrada AE (2008) Molecular phylogeny and increases of yield and the antioxidants selenium and ergothioneine in basidiomata of Pleurotus eryngii. Ph.D. Dissertation, The Pennsylvania State University

  17. Avin FA, Bhassu S, Tan YS, Shahbazi P, Vikineswary S (2014) Molecular divergence and species delimitation of the cultivated oyster mushrooms: integration of IGS1 and ITS. Sci World J. doi:10.1155/2014/793414

    Google Scholar 

  18. Froslev TG, Matheny PB, Hibbett DS (2005) Lower level relationships in the mushroom genus Cortinarius (Basidiomycota, Agaricales): a comparison of RPB1, RPB2, and ITS phylogenies. Mol Phylogenet Evol 37:602–618

    Article  CAS  PubMed  Google Scholar 

  19. Rodriguez Estrada AE, del Mar Jimenez-Gasco M, Royse DJ (2010) Pleurotus eryngii species complex: sequence analysis and phylogeny based on partial EF1α and RPB2 genes. Fungal Biol 114:421–428

    Article  Google Scholar 

  20. Schoch CL, Seifert K, Huhndorf S et al (2012) Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for fungi. Proc Natl Acad Sci USA 109:241–6246

    Google Scholar 

  21. White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenies. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols, a guide to methods and applications. Academic Press, San Diego

    Google Scholar 

  22. Liu YJ, Whelen S, Hall D (1999) Phylogenetic relationships among Ascomycetes: evidence from an RNA polymerase II subunit. Mol Biol Evol 16:1799–1808

    Article  CAS  PubMed  Google Scholar 

  23. Matheny PB (2005) Improving phylogenetic inference of mushrooms with RPB1 and RPB2 nucleotide sequences (Inocybe; Agaricales). Mol Phylogenet Evol 35:1–20

    Article  CAS  PubMed  Google Scholar 

  24. Marongiu P, Maddau L, Frisullo S, Marras F (2005) A multigene approach for the taxonomic determination of Pleurotus eryngii isolates. In: Tan Q, Zhang J, Chen M, Cao H, Buswell JA (eds) Mushroom Biology and Mushroom Products, vol 12. Shanghai Xinhua Printing Co., Ltd, Acta Edulis Fungi, Shanghai, pp 89–91

    Google Scholar 

  25. Wendland J, Kothe E (1997) Isolation of tef1 encoding translation elongation factor EF-1α from the homobasidiomycete Schizophyllum commune. Mycol Res 101:798–802

    Article  CAS  Google Scholar 

  26. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hall TA (1999) Bioedit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  29. Swofford DL (2003) PAUP*: phylogenetic analysis using parsimony (*and other methods) version 4.0b10. Sinauer, Sunderland

    Google Scholar 

  30. Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574

    Article  CAS  PubMed  Google Scholar 

  31. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  CAS  PubMed  Google Scholar 

  32. Ravash R, Shiran B, Alavi A-A, Bayat F, Rajaee S, Zervakis GI (2010) Genetic variability and molecular phylogeny of Pleurotus eryngii species-complex isolates from Iran, and notes on the systematics of Asiatic populations. Mycol Prog 9:181–194

    Article  Google Scholar 

  33. Zervakis G, Venturella G, Papadopoulou K (2001) Genetic polymorphism and taxonomic infrastructure of the Pleurotus eryngii species complex as determined by RAPD analysis, isozyme profiles and ecomorphological characters. Microbiology 147:3183–3194

    Article  CAS  PubMed  Google Scholar 

  34. Zervakis G, Balis C (1996) A pluralistic approach on the study of Pleurotus species, with emphasis on compatibility and physiology of the European morphotaxa. Mycol Res 100:717–731

    Article  Google Scholar 

  35. Venturella G (2000) Typification of Pleurotus nebrodensis. Mycotaxon 75:229–231

    Google Scholar 

  36. Taylor JW, Jacobson DJ, Kroken S, Kasuga T, Geiser DM, Hibbett DS, Fisher MC (2000) Phylogenetic species recognition and species concepts in fungi. Fungal Genet Biol 31:21–32

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Dr. Egon Horak is acknowledged for valuable suggestions to improve the manuscript. The research was financed by the Applied Basic Research, Science and Technology Department of Sichuan Province (Project No. 2013JY0114), National Public Welfare (Agriculture) Science and Technology Project (201503137), Sichuan Provincial Infrastructure of Microbial Resources (15010302) and Sichuan Provincial Innovation Ability Promotion Engineering (Project No. 2014LWJJ-005).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bo Wu or Bing-Cheng Gan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, XL., Wu, B., Li, Q. et al. Phylogenetic relationship of two popular edible Pleurotus in China, Bailinggu (P. eryngii var. tuoliensis) and Xingbaogu (P. eryngii), determined by ITS, RPB2 and EF1α sequences. Mol Biol Rep 43, 573–582 (2016). https://doi.org/10.1007/s11033-016-3982-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-016-3982-2

Keywords

Navigation