Skip to main content

Advertisement

Log in

The early life origin theory in the development of cardiovascular disease and type 2 diabetes

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Life expectancy has been examined from a variety of perspectives in recent history. Epidemiology is one perspective which examines causes of morbidity and mortality at the population level. Over the past few 100 years there have been dramatic shifts in the major causes of death and expected life length. This change has suffered from inconsistency across time and space with vast inequalities observed between population groups. In current focus is the challenge of rising non-communicable diseases (NCD), such as cardiovascular disease and type 2 diabetes mellitus. In the search to discover methods to combat the rising incidence of these diseases, a number of new theories on the development of morbidity have arisen. A pertinent example is the hypothesis published by David Barker in 1995 which postulates the prenatal and early developmental origin of adult onset disease, and highlights the importance of the maternal environment. This theory has been subject to criticism however it has gradually gained acceptance. In addition, the relatively new field of epigenetics is contributing evidence in support of the theory. This review aims to explore the implication and limitations of the developmental origin hypothesis, via an historical perspective, in order to enhance understanding of the increasing incidence of NCDs, and facilitate an improvement in planning public health policy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  1. Riley JC (2001) rising life expectancy a global perspective. Cambridge University Press, Cambridge

  2. WHO (2011) Global status report on noncommunicable diseases 2010: description of the global burden of NCDs, their risk factors and determinants. World Health Organisation, Geneva

    Google Scholar 

  3. Reddy KS, Yusuf S (1998) Emerging epidemic of cardiovascular disease in developing countries. Circulation 97(6):596–601. doi:10.1161/01.cir.97.6.596

    Article  CAS  PubMed  Google Scholar 

  4. Barker DJP (1995) Fetal origins of coronary heart disease. BMJ: Br Med J 311 (6998):171-174. doi:10.1136/bmj.311.6998.171

  5. Barker DJ, Martyn CN (1992) The maternal and fetal origins of cardiovascular disease. J Epidemiol Community Health 46(1):8–11

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Leon DA, Lithell HO, Vågerö D, Koupilová I, Mohsen R, Berglund L, Lithell U-B, McKeigue PM (1998) Reduced fetal growth rate and increased risk of death from ischaemic heart disease: cohort study of 15 000 Swedish men and women born 1915–1929. BMJ Br Med J 7153:241. doi:10.2307/25179920

    Article  Google Scholar 

  7. Whincup PH, Kaye SJ, Owen CG, Huxley R, Cook DG, Anazawa S, Barrett-Connor E, Bhargava SK, Birgisdottir BE, Carlsson S, de Rooij SR, Dyck RF, Eriksson JG, Falkner B, Fall C, Forsen T, Grill V, Gudnason V, Hulman S, Hypponen E, Jeffreys M, Lawlor DA, Leon DA, Minami J, Mishra G, Osmond C, Power C, Rich-Edwards JW, Roseboom TJ, Sachdev HS, Syddall H, Thorsdottir I, Vanhala M, Wadsworth M, Yarbrough DE (2008) Birth weight and risk of type 2 diabetes: a systematic review. JAMA 300(24):2886–2897. doi:10.1001/jama.2008.886

    Article  CAS  PubMed  Google Scholar 

  8. Andersen LG, Ängquist L, Eriksson JG, Forsen T, Gamborg M, Osmond C, Baker JL, Sørensen TIA (2010) Birth weight, childhood body mass index and risk of coronary heart disease in adults: combined historical cohort studies. PLoS ONE 5(11):e14126

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Kajantie E, Osmond C, Barker DJP, Eriksson JG (2010) Preterm birth—a risk factor for type 2 diabetes?: the Helsinki Birth cohort study. Diabetes Care 33(12):2623–2625. doi:10.2337/dc10-0912

    Article  PubMed Central  PubMed  Google Scholar 

  10. Fan Z, Zhang Z-X, Li Y, Wang Z, Xu T, Gong X, Zhou X, Wen H, Zeng Y (2010) Relationship between birth size and coronary heart disease in China. Ann Med 42(8):596–602. doi:10.3109/07853890.2010.514283

    Article  PubMed Central  PubMed  Google Scholar 

  11. McNamara BJ, Gubhaju L, Chamberlain C, Stanley F, Eades SJ (2012) Early life influences on cardio-metabolic disease risk in aboriginal populations–what is the evidence? A systematic review of longitudinal and case-control studies. Int J Epidemiol 41(6):1661–1682. doi:10.1093/ije/dys190

    Article  PubMed  Google Scholar 

  12. Chamberlain C, McNamara B, Williams ED, Yore D, Oldenburg B, Oats J, Eades S Diabetes in pregnancy among indigenous women in Australia, Canada, New Zealand and the United States. Diabetes Metab Res Rev 29 (4):241-256. doi:10.1002/dmrr.2389

  13. Bouchard L (2013) Epigenetics and fetal metabolic programming: a call for integrated research on larger cohorts. Diabetes 62(4):1026–1028. doi:10.2337/db12-1763

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Karagiannis TC, Maulik N (2012) Factors influencing epigenetic mechanisms and related diseases. Antioxid Redox Signal 17(2):192–194

    Article  CAS  PubMed  Google Scholar 

  15. Van Speybroeck L (2002) From epigenesis to epigenetics: the case of C. H Waddington. Ann NY Acad Sci 981:61–81

    Article  PubMed  Google Scholar 

  16. Fradin D, Bougneres P (2011) T2DM: why epigenetics? J Nutr Metab 2011:647514. doi:10.1155/2011/647514

    Article  PubMed Central  PubMed  Google Scholar 

  17. Feinberg AP (2013) The epigenetic basis of common human disease. Trans Am Clin Climatol Assoc 124:84

    PubMed Central  PubMed  Google Scholar 

  18. Seki Y, Williams L, Vuguin PM, Charron MJ (2012) Minireview: epigenetic programming of diabetes and obesity: animal models. Endocrinology 153(3):1031–1038. doi:10.1210/en.2011-1805

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Vaag AA, Grunnet LG, Arora GP, Brøns C (2012) The thrifty phenotype hypothesis revisited. Diabetologia 55(8):2085–2088. doi:10.1007/s00125-012-2589-y

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Jackson FL, Niculescu MD, Jackson RT (2013) Conceptual shifts needed to understand the dynamic interactions of genes, environment, epigenetics, social processes, and behavioral choices. Am J Public Health 103(Suppl 1):S33–S42. doi:10.2105/AJPH.2013.301221

    Article  PubMed Central  PubMed  Google Scholar 

  21. Morgan HD, Sutherland HGE, Martin DIK, Whitelaw E (1999) Epigenetic inheritance at the agouti locus in the mouse. Nature genetics, vol 23. Nature Publishing Group

  22. Rosenfeld CS (2010) Animal models to study environmental epigenetics. Biol Reprod 82(3):473–488. doi:10.1095/biolreprod.109.080952

    Article  CAS  PubMed  Google Scholar 

  23. Dolinoy DC, Weidman JR, Jirtle RL (2007) Epigenetic gene regulation: Linking early developmental environment to adult disease. Reprod Toxicol 23(3):297–307. doi:10.1016/j.reprotox.2006.08.012

    Article  CAS  PubMed  Google Scholar 

  24. Adamo KB, Ferraro ZM, Brett KE (2012) Can we modify the intrauterine environment to halt the intergenerational cycle of obesity? Int J Environ Res Public Health 9(4):1263–1307. doi:10.3390/ijerph9041263

    Article  PubMed Central  PubMed  Google Scholar 

  25. Lillycrop KA (2011) Effect of maternal diet on the epigenome: implications for human metabolic disease. Proc Nutr Soc 70(1):64–72. doi:10.1017/S0029665110004027

    Article  PubMed  Google Scholar 

  26. Pc Beldade, Mateus ARA, Keller RA (2011) Evolution and molecular mechanisms of adaptive developmental plasticity. Mol Ecol 20(7):1347–1363

    Article  Google Scholar 

  27. Godfrey KM, Lillycrop KA, Burdge GC, Gluckman PD, Hanson MA (2007) Epigenetic mechanisms and the mismatch concept of the developmental origins of health and disease. Pediatr Res 61 (5 Part 2):5R–10R

  28. Suter M, Ma J, Harris A, Patterson L, Brown KA, Shope C, Showalter L, Abramovici A, Aagaard-Tillery KM (2011) Maternal tobacco use modestly alters correlated epigenome-wide placental DNA methylation and gene expression. Epigenetics 6(11):1284–1294. doi:10.4161/epi.6.11.17819

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Talens RP, Jukema JW, Trompet S, Kremer D, Westendorp RG, Lumey LH, Sattar N, Putter H, Slagboom PE, Heijmans BT (2012) Hypermethylation at loci sensitive to the prenatal environment is associated with increased incidence of myocardial infarction. Int J Epidemiol 41(1):106–115. doi:10.1093/ije/dyr153

    Article  PubMed Central  PubMed  Google Scholar 

  30. Wu G, Bazer FW, Cudd TA, Meininger CJ, Spencer TE (2004) Maternal nutrition and fetal development. J Nutr 134(9):2169–2172

    CAS  PubMed  Google Scholar 

  31. Almond D, Curri J (2011) Killing me softly: the fetal origins hypothesis. J Econ Perspect (3)

  32. Barker DJ (2002) Fetal programming of coronary heart disease. Trends Endocrinol Metab 13(9):364–368

    Article  CAS  PubMed  Google Scholar 

  33. Waterland RA, Michels KB (2007) Epigenetic epidemiology of the developmental origins hypothesis. Annu Rev Nutr 27:363–388

    Article  CAS  PubMed  Google Scholar 

  34. Lechtig A, Habicht J-P, Delgado H, Klein RE, Yarbrough C, Martorell R (1975) Effect of food supplementation during pregnancy on birthweight. Pediatrics 56(4):508–520

    CAS  PubMed  Google Scholar 

  35. Brenseke B, Prater MR, Bahamonde J, Gutierrez JC (2013) Current thoughts on maternal nutrition and fetal programming of the metabolic syndrome. J Pregnancy 2013:13. doi:10.1155/2013/368461

    Article  Google Scholar 

  36. van Abeelen AF, Elias SG, Bossuyt PM, Grobbee DE, van der Schouw YT, Roseboom TJ, Uiterwaal CS (2012) Famine exposure in the young and the risk of type 2 diabetes in adulthood. Diabetes 61(9):2255–2260. doi:10.2337/db11-1559

    Article  PubMed Central  PubMed  Google Scholar 

  37. Eriksson JG (2011) Early growth and coronary heart disease and type 2 diabetes: findings from the Helsinki Birth Cohort Study (HBCS). Am J Clin Nutr 94(6 Suppl):1799S–1802S. doi:10.3945/ajcn.110.000638

    Article  CAS  PubMed  Google Scholar 

  38. Ramírez-Torres MA (2013) The importance of gestational diabetes beyond pregnancy. Nutr Rev 71:S37–S41. doi:10.1111/nure.12070

    Article  PubMed  Google Scholar 

  39. Heijmans BT, Tobi EW, Stein AD, Putter H, Blauw GJ, Susser ES, Slagboom PE, Lumey LH (2008) Persistent epigenetic differences associated with prenatal exposure to famine in humans. Proc Natl Acad Sci 105(44):17046–17049. doi:10.1073/pnas.0806560105

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Jürges H (2013) Collateral damage: the German food crisis, educational attainment and labor market outcomes of German post-war cohorts. J Health Econ 32(1):286–303. doi:10.1016/j.jhealeco.2012.11.001

    Article  PubMed  Google Scholar 

  41. Catalano P, Ehrenberg H (2006) Review article: the short-and long-term implications of maternal obesity on the mother and her offspring. BJOG Int J Obstet Gynaecol 113(10):1126–1133

    Article  CAS  Google Scholar 

  42. Whitaker RC (2004) Predicting preschooler obesity at birth: the role of maternal obesity in early pregnancy. Pediatrics 114(1):e29–e36

    Article  PubMed  Google Scholar 

  43. Varvarigou AA (2010) Intrauterine growth restriction as a potential risk factor for disease onset in adulthood. J Pediatr Endocrinol Metab 23(3):215–224

    CAS  PubMed  Google Scholar 

  44. Harvey LB, Ricciotti HA (2013) Nutrition for a Healthy Pregnancy. Am J Lifestyle Med. doi:10.1177/1559827613498695

    Google Scholar 

  45. Arnuna P, Zotor FB (2008) Epidemiological and nutrition transition in developing countries: impact on human health and development. Proc Nutr Soc 67(1):82–90

    Article  Google Scholar 

  46. Castro LC, Avina RL (2002) Maternal obesity and pregnancy outcomes. Curr Opin Obstet Gynecol 14(6):601–606

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

TCK is a Future Fellow and Epigenomic Medicine Laboratory is supported by the Australian Research Council. Supported by McCord Research and the authors would like to acknowledge the intellectual contribution of Dr. Darlene McCord. Supported in part by the Victorian Government’s Operational Infrastructure Support Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tom C Karagiannis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lindblom, R., Ververis, K., Tortorella, S.M. et al. The early life origin theory in the development of cardiovascular disease and type 2 diabetes. Mol Biol Rep 42, 791–797 (2015). https://doi.org/10.1007/s11033-014-3766-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-014-3766-5

Keywords

Navigation