Skip to main content

Advertisement

Log in

A pilot study of gas chromatograph/mass spectrometry-based serum metabolic profiling of colorectal cancer after operation

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Colorectal cancer (CRC) is mainly depended on the radical operation, the changing energy metabolism after operation reflects the extent, the magnitude, and the degree of surgical trauma. The aim of this study was to analyse the biochemical perturbation in the serum of CRC after operation and to evaluate their involvement in the progression of CRC. Gas chromatograph-mass spectrometry (GC-MS) in combination with pattern recognition techniques (Partial least squares discriminant analysis, supervised clustering analysis) was used to analyze serum metabolome in 30 CRC patients. A 34 endogenous metabolites included amino acid, fatty acid, carbohydrate and other intermediate metabolites were identified. Partial least squares discriminant analysis based on these metabolites discriminated preoperative from postoperative CRC group. Compared with preoperative CRC patients group, decreases in l-valine, 5-oxo-l-proline, 1-deoxyglucose, d-turanose, d-maltose, arachidonic acid and hexadecanoic acid levels and increases in l-tyrosine levels were observed in postoperative CRC patients group. The result demonstrated the GC-MS technique is an valuable tool for the characterization of the metabolic perturbation, and the metabolomic study will certainly benefit for monitoring the nutrition state of CRC patients, the prognosis and therapy evaluation of CRC patients after operation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

CRC:

Colorectal cancer

PLS-DA:

Partial least squares discriminant analysis

GC-MS:

Gas chromatography-mass spectrometry

TIC:

Total ion current

LMC:

Low molecular weight compounds

MVDA:

Multivariate data analysis

MSTFA:

Trimethylsilyl-trifluoroacetamide

DM:

Diabetes mellitus

HL:

Hyperlipoidemia

TMCS:

Trimethylchlorosilane

References

  1. Ward DG, Suggett N, Cheng Y, Wei W, Johnson H, Billingham LJ, Ismail T, Wakelam MJ, Johnson PJ, Martin A (2006) Identification of serum biomarkers for colon cancer by proteomic analysis. Br J Cancer 94:1898–1905. doi:10.1038/sj.bjc.6603188

    Article  CAS  PubMed  Google Scholar 

  2. Hung KE, Chung DC (2006) Colorectal cancer screening: today and tomorrow. South Med J 99:240–246. doi:10.1097/01.smj.0000203817.89741.29

    Article  PubMed  Google Scholar 

  3. Tan S, Seow TK, Liang RC, Koh S, Lee CP, Chung MC, Hooi SC (2002) Proteome analysis of butyrate-treated human colon cancer cells (HT-29). Int J Cancer 98:523–531. doi:10.1002/ijc.10236

    Article  CAS  PubMed  Google Scholar 

  4. You WC, Jin F, Devesa S, Gridley G, Schatzkin A, Yang G, Rosenberg P, Xiang YB, Hu YR, Li Q (2002) Rapid increase in colorectal cancer rates in urban Shanghai, 1972–97, in relation to dietary changes. J Cancer Epidemiol Prev 7:143–146

    PubMed  Google Scholar 

  5. Denkert C, Budczies J, Weichert W, Wohlgemuth G, Scholz M, Kind T, Niesporek S, Noske A, Buckendahl A, Dietel M, Fiehn O (2008) Metabolite profiling of human colon carcinoma–deregulation of TCA cycle and amino acid turnover. Mol Cancer 7:72. doi:10.1186/1476-4598-7-72

    Article  PubMed  CAS  Google Scholar 

  6. Chan EC, Koh PK, Mal M, Cheah PY, Eu KW, Backshall A, Cavill R, Nicholson JK, Keun HC (2008) Metabolic profiling of human colorectal cancer using high-resolution magic angle spinning nuclear magnetic resonance (HR-MAS NMR) spectroscopy and gas chromatography mass spectrometry (GC/MS). J Proteome Res. (Epub ahead of print)

  7. Seierstad T, Røe K, Sitter B, Halgunset J, Flatmark K, Ree AH, Olsen DR, Gribbestad IS, Bathen TF (2008) Principal component analysis for the comparison of metabolic profiles from human rectal cancer biopsies and colorectal xenografts using high-resolution magic angle spinning 1H magnetic resonance spectroscopy. Mol Cancer 7:33. doi:10.1186/1476-4598-7-33

    Article  PubMed  CAS  Google Scholar 

  8. Pasikanti KK, Ho PC, Chan EC (2008) Gas chromatography/mass spectrometry in metabolic profiling of biological fluids. J Chromatogr B Analyt Technol Biomed Life Sci 871:202–211. doi:10.1016/j.jchromb.2008.04.033

    Article  CAS  PubMed  Google Scholar 

  9. Sato N, Kusama A, Ohkawa A, Koyama Y, Oyamatsu M, Kayama S, Yoshikawa K, Tanaka O, Muto K (1993) Resting energy expenditure in patients undergoing transhiatal or transthoracic oesophagectomy for carcinoma of the thoracic oesophagus. Br J Surg 80:1413–1415. doi:10.1002/bjs.1800801119

    Article  CAS  PubMed  Google Scholar 

  10. Chernow B, Alexander HR, Smallridge RC, Thompson WR, Cook D, Beardsley D, Fink MP, Lake CR, Fletcher JR (1987) Hormonal responses to graded surgical stress. Arch Intern Med 147:1273–1278. doi:10.1001/archinte.147.7.1273

    Article  CAS  PubMed  Google Scholar 

  11. Brandi LS, Bertolini R, Janni A, Gioia A, Angeletti CA (1996) Energy metabolism of thoracic surgical patients in the early postoperative period. Effect of posture. Chest 109:630–637. doi:10.1378/chest.109.3.630

    Article  CAS  PubMed  Google Scholar 

  12. Feng B, Zheng MH, Zheng YF, Lu AG, Li JW, Wang ML, Ma JJ, Xu GW, Liu BY, Zhu ZG (2005) Normal and modified urinary nucleosides represent novel biomarkers for colorectal cancer diagnosis and surgery monitoring. J Gastroenterol Hepatol 20:1913–1919. doi:10.1111/j.1440-1746.2005.03888.x

    Article  PubMed  Google Scholar 

  13. Saghatelian A, Cravatt BF (2005) Global strategies to integrate the proteome and metabolome. Curr Opin Chem Biol 9:62–68. doi:10.1016/j.cbpa.2004.12.004

    Article  CAS  PubMed  Google Scholar 

  14. Griffin JL (2006) Understanding mouse models of disease through metabolomics. Curr Opin Chem Biol 10:111–117. doi:10.1016/j.cbpa.2006.06.027

    Article  CAS  Google Scholar 

  15. Nobeli I, Thornton JM (2006) A bioinformatician’s view of the metabolome. Bioessays 28:534–545. doi:10.1002/bies.20414

    Article  CAS  PubMed  Google Scholar 

  16. Nicholson JK, Lindon JC, Holmes E (1999) ‘Metabonomics’: understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica 29:1181–1189. doi:10.1080/004982599238047

    Article  CAS  PubMed  Google Scholar 

  17. Nicholson JK, Connelly J, Lindon JC, Holmes E (2002) Metabonomics: a platform for studying drug toxicity and gene function. Nat Rev Drug Discov 1:153–161. doi:10.1038/nrd728

    Article  CAS  PubMed  Google Scholar 

  18. Shen Q, Li X, Qiu Y, Su M, Liu Y, Li H, Wang X, Zou X, Yan C, Yu L, Li S, He L, Jia W (2008) Metabonomic and metallomic profiling in the amniotic fluid of malnourished pregnant rats. J Proteome Res. (Epub ahead of print)

  19. Tang HR, Wang YL (2006) Metabonomics: a revolution in progress. Prog Biochem Biophys 33:401–417

    CAS  Google Scholar 

  20. Lindon JC, Holmes E, Bollard ME, Stanley EG, Nicholson JK (2004) Metabonomics technologies and their applications in physiological monitoring, drug safety assessment and disease diagnosis. Biomarkers 9:1–31. doi:10.1080/13547500410001668379

    Article  CAS  PubMed  Google Scholar 

  21. Mao YY, Bai JQ, Chen JH, Shou ZF, He Q, Wu JY, Chen Y, Cheng YY (2008) A pilot study of GC/MS-based serum metabolic profiling of acute rejection in renal transplantation. Transpl Immunol 19:74–80

    CAS  PubMed  Google Scholar 

  22. Jiye A, Trygg J, Gullberg J, Johansson AI, Jonsson P, Antti H, Marklund SL, Moritz T (2005) Extraction and GC/MS analysis of the human blood plasma metabolome. Anal Chem 77:8086–8094. doi:10.1021/ac051211v

    Article  CAS  Google Scholar 

  23. Jonsson P, Gullberg J, Nordstrom A, Kusano M, Kowalczyk M, Sjostrom M, Moritz T (2004) A strategy for in large series of metabolomic samples analyzed by GC/MS. Anal Chem 76:1738–1745. doi:10.1021/ac0352427

    Article  CAS  PubMed  Google Scholar 

  24. Jonsson P, Johansson AI, Gullberg J, Trygg J, Jiye A, Grung B, Marklund S, Sjosttrom M, Antti H, Moritz T (2005) High-throughput data analysis for detecting and identifying differences between samples in GC/MS-based metabolomic analyses. Anal Chem 77:5635–5642. doi:10.1021/ac050601e

    Article  CAS  PubMed  Google Scholar 

  25. Kim YS, Maruvada P, Milner JA (2008) Metabolomics in biomarker discovery: future uses for cancer prevention. Future Oncol 4:93–102. doi:10.2217/14796694.4.1.93

    Article  CAS  PubMed  Google Scholar 

  26. Langbein S, Zerilli M, Zur Hausen A, Staiger W, Rensch-Boschert K, Lukan N, Popa J, Ternullo MP, Steidler A, Weiss C, Grobholz R, Willeke F, Alken P, Stassi G, Schubert P, Coy JF (2006) Expression of transketolase TKTL1 predicts colon and urothelial cancer patient survival: Warburg effect reinterpreted. Br J Cancer 94:578–585. doi:10.1038/sj.bjc.6602962

    Article  CAS  PubMed  Google Scholar 

  27. Yu K, Sheng G, Sheng J, Chen Y, Xu W, Liu X, Cao H, Cheng Y, Li L (2007) A metabonomic investigation on the biochemical perturbation in liver failure patients caused by hepatitis B virus. J Proteome Res 6:2413–2419. doi:10.1021/pr060591d

    Article  CAS  PubMed  Google Scholar 

  28. Jonsson P, Bruce SJ, Moritz T, Trygg J, Sjostrom M, Plumb R, Granger J, Maibaum E, Nicholson JK, Holmes E, Antti H (2005) Extraction, interpretation and validation of information for comparing samples in metabolic LC/MS data sets. Analyst (Lond) 130:701–707. doi:10.1039/b501890k

    Article  CAS  Google Scholar 

  29. den Broeder E, Oeseburg B, Lippens RJ, van Staveren WA, Sengers RC, van′s Hof MA, Tolboom JJ (2001) Basal metabolic rate in children with a solid tumour. Eur J Clin Nutr 55:673–681. doi:10.1038/sj.ejcn.1601199

    Article  Google Scholar 

  30. Fredrix EW, Staal-van den Brekel AJ, Wouters EF (1997) Energy balance in nonsmall cell lung carcinoma patients before and after surgical resection of their tumors. Cancer 79:717–723. doi:10.1002/(SICI)1097-0142(19970215)79:4<717::AID-CNCR8>3.0.CO;2-A

    Article  CAS  PubMed  Google Scholar 

  31. Fredrix EW, Soeters PB, von Meyenfeldt MF, Saris WH (1991) Resting energy expenditure in cancer patients before and after gastrointestinal surgery. J Parenter Enter Nutr 15:604–607. doi:10.1177/0148607191015006604

    Article  CAS  Google Scholar 

  32. Hansell DT, Davies JW, Burns HJ (1986) Effects of hepatic metastases on resting energy expenditure in patients with colorectal cancer. Br J Surg 73:659–662. doi:10.1002/bjs.1800730828

    Article  CAS  PubMed  Google Scholar 

  33. Zarkovic M, Beleslin B, Ciric J, Penezic Z, Stojkovic M, Trbojevic B, Drezgic M, Savic S (2008) Glucocorticoid effect on insulin sensitivity: a time frame. J Endocrinol Invest 31:238–242

    CAS  PubMed  Google Scholar 

  34. Barth E, Albuszies G, Baumgart K, Matejovic M, Wachter U, Vogt J, Radermacher P, Calzia E (2007) Glucose metabolism and catecholamines. Crit Care Med 35:508–518. doi:10.1097/01.CCM.0000278047.06965.20

    Article  CAS  Google Scholar 

  35. Simopoulos AP (1999) Essential fatty acids in health and chronic disease. J Clin Nutr 70:560–569

    Google Scholar 

  36. Burr GO, Burr MM, Miller E (1930) On the nature and role of the fatty acids essential in nutrition. J Biol Chem 86:587

    CAS  Google Scholar 

Download references

Acknowledgments

We would like to express our deep and sincere gratitude to the Professor M. Michael Wolf (Boston University School of Medicine, USA) for his advice on this manuscript when he came to Shanghai. We thank Professor Harry Hua-Xiang Xia (Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong SAR) for help suggestion in preparation of the revised manuscript. This study was financially supported by the Grants from Shanghai Science and Technology Development Fund (No. 05DJ14010), the Major Basic Research Program of Shanghai (No. 07DZ19505), and the Ministry of Science and Technology of People’s Republic of China (No. 2008CB517403).

Competing interests

We declare that we have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huanlong Qin.

Additional information

Authors’ contributions

Professor Huanlong Qin designed the total experiment; Dr Weijie Liu, Jiayuan Peng and Long Huang collected the colorectal cancer serum samples; Yanlei Ma, Xiaoping Zhao and Yiyu Cheng performed the entire study, meanwhile, analyzed and interpreted the acquired data; Yanlei Ma wrote the manuscript, Professor Huanlong Qin decided to submit the manuscript for publication.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, Y., Liu, W., Peng, J. et al. A pilot study of gas chromatograph/mass spectrometry-based serum metabolic profiling of colorectal cancer after operation. Mol Biol Rep 37, 1403–1411 (2010). https://doi.org/10.1007/s11033-009-9524-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-009-9524-4

Keywords

Navigation