Skip to main content
Log in

Co-expression of the Suaeda salsa SsNHX1 and Arabidopsis AVP1 confer greater salt tolerance to transgenic rice than the single SsNHX1

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Transgenic rice plants co-expressing the Suaeda salsa SsNHX1 (vacuolar membrane Na+/H+ antiporter) and Arabidopsis AVP1 (vacuolar H+-PPase) showed enhanced salt tolerance during 3 d of 300 mM NaCl treatment under outdoor growth conditions. These transgenic rice seedlings also grew better on MS medium containing 150 mM NaCl compared to SsNHX1-transformed lines and non-transformed controls. Measurements on isolated vacuolar membrane vesicles derived from the salt stressed SsNHX1+AVP1-transgenic plants demonstrated that the vesicles had increased V-PPase hydrolytic activity in comparison with the Ss-transgenics and non-transgenics. Moreover the V-PPase activity was closely related to the development period of the SA-transgenic seedlings and markedly higher in 3-week-old seedlings than in 5-week-old seedlings. Statistic analysis indicated that the SA-transgenic rice plants contained relatively more ions with higher K+/Na+ ratio in their shoots compared to the SsNHX1-transformed lines upon salt treatment. Furthermore, these SA-transformants also exhibited relatively higher level of photosynthesis and root proton exportation capacity whereas reduced H2O2 generation in the same plants. In general, these results supported the hypothesis that simultaneous expression of the SsNHX1 and AVP1 conferred greater performance to the transgenic plants than that of the single SsNHX1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allakhverdiev SI, Nishiyama Y, Suzuki I, Tasaka Y, Murata N (1999) Genetic engineering of the unsaturation of fatty acids in membrane lipids alters the tolerance of Synechocystis to salt stress. Proc Natl Acad Sci USA 96:5862–5867

    Article  PubMed  CAS  Google Scholar 

  • Allakhverdiev SI, Sakamoto A, Nishiyama Y, Inaba M, Murata␣N (2000a) Ionic and osmotic effects of NaCl-induced␣inactivation of photosystems I and II in Synechococcus sp. Plant Physiol 123:1047–1056

    Article  CAS  Google Scholar 

  • Allakhverdiev SI, Sakamoto A, Nishiyama Y, Murata N (2000b) Inactivation of photosystems I and II in response to osmotic stress in Synechococcus: contribution of water channels. Plant Physiol 122:1201–1208

    Article  CAS  Google Scholar 

  • Apse MP, Aharon GS, Snedden WA, Blumwald E (1999) Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in Arabidopsis. Science 285:1256–1258

    Article  PubMed  CAS  Google Scholar 

  • Barklaz BJ, Zingarelli L, Blumwald E, Smith JAC (1995) Tonoplast Na+/H+ antiport activity and its energization by the vacuolar H+-ATPase in the halophytic plant Mesembryanthemum crystallinum. Plant Physiol 109:549–556

    Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Fukuda A, Nakamura A, Tagiri A, Tanaka H, Miyao A, Hirochika H, Tanaka Y (2004) Function, intracellular localization and the importance in salt tolerance of a vacuolar Na+/H+ antiporter from rice. Plant Cell Physiol 45:149–159

    Google Scholar 

  • Gao XH, Ren ZH, Zhao YX, Zhang H (2003) Overexpression of SOD2 increases salt tolerance of Arabidopsis. Plant Physiol 133:1873–1881

    Article  PubMed  CAS  Google Scholar 

  • Gaxiola RA, Li J, Undurraga S, Dang LM, Allen GJ, Alper SL, Fink GR (2001) Drought- and salt-tolerant plants result from overexpression of the AVP1 H+-pump. Proc Natl Acad Sci USA 98(20):11444–11449

    Article  PubMed  CAS  Google Scholar 

  • Golldack D, Dietz KJ (2001) Salt-induced expression of the vacuolar H+-ATPase in the common ice plant is developmentally controlled and tissue specific. Plant Physiol 125(4):1643–1654

    Article  PubMed  CAS  Google Scholar 

  • Greenway H, Munns R (1980) Mechanisms of salt tolerance in non-halophytes. Annu Rev Plant Physiol 31:149–190

    Article  CAS  Google Scholar 

  • Horie T, Schroede JI (2004) Sodium transporters in plants. Diverse genes and physiological functions. Plant Physiol 136:2457–2462

    Article  PubMed  CAS  Google Scholar 

  • Jang IC, Nahm BH, Kim JK (1999) Subcellular targeting of green fluorescent protein to plastids in transgenic rice plants provides a high-level expression system. Mol Breed 5:453–461

    Article  CAS  Google Scholar 

  • Leigh RA, Gordon-Weeks R, Steele SH, Koren'kov VD (1994) The H(+)-pumping inorganic pyrophosphatase of the vacuolar membrane of higher plants. Symp Soc Exp Biol 48:61–75

    PubMed  CAS  Google Scholar 

  • Liu QQ, Zang JL, Wang ZY, Hong MM, Gu MH (1998) A highly efficient transformation system mediated by Agrobacterium tumefaciens in Rice (Oryza sativa L.). Acta Phytophysiol Sin 24(3):259–271

    CAS  Google Scholar 

  • Lin ZF, Li SS, Lin GZ (1988) The accumulation of hydrogen peroxide in senescencing leaves and chloroplasts in relation to lipid peroxidation. Acta Phytophysiol Sin 14(1):16–22

    CAS  Google Scholar 

  • Ma XL, Zhang Q, Shi HZ, Zhu JK, Zhao YX, Ma CL, Zhang H (2004) Molecular cloning and different expression of a vacuolar Na+/H+ antiporter gene in Suaeda salsa under salt stress. Biol Plant 48(2):219–225

    Article  CAS  Google Scholar 

  • Maathuis FJ, Filatov V, Herzyk P, Krijger GC, Axelsen KB, Chen S, Green BJ, Li Y, Madagan KL, Sanchez-Fernandez R, Forde BG, Palmgren MG, Rea PA, Williams LE, Sanders D, Amtmann A (2003) Transcriptome analysis of root transporters reveals participation of multiple gene families in the response to cation stress. Plant J 35(6):675–692

    Article  PubMed  CAS  Google Scholar 

  • Maeshima M (1991) H(+)-translocating inorganic pyrophosphatase of plant vacuoles. Inhibition by Ca2+, stabilization by Mg2+ and immunological comparison with other inorganic pyrophosphatases. Eur J Biochem 196(1):11–17

    Google Scholar 

  • Mittova V, Guy M, Tal M, Volokita M (2004) Salinity up-regulates the antioxidative system in root mitochondria and peroxisomes of the wild salt-tolerant tomato species Lycopersicon pennellii. J Exp Bot 55(399):1105–1113

    Article  PubMed  CAS  Google Scholar 

  • Mohanty A, Kathuria H, Ferjani A, Sakamoto A, Mohanty P, Murata N, Tyagi AK (2002) Transgenics of an elite indica rice variety Pusa Basmati 1 harbouring the codA gene are␣highly tolerant to salt stress. Theor Appl Genet 106(1):51–57

    PubMed  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassay with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Niu X, Bressan RA, Hasegawa PM, Pardo JM (1995) Ion homeostasis in NaCl stress environments. Plant Physiol 109:735–742

    PubMed  CAS  Google Scholar 

  • Ohta M, Hayashi Y, Nakashima A, Hamada A, Tanaka A, Nakamura T, Hayakawa T (2002) Introduction of a Na+/H+antiporter gene from Atriplex gmelini confers salt tolerance to rice. FEBS Lett 532:279–282

    Article  PubMed  CAS  Google Scholar 

  • Papageorgiou GC, Alygizaki-Zorba A, Ladas N, Murata N (1998) A method to probe the cytoplasmic osmolality and osmotic water and solute fluxes across the cell membrane of cyanobacteria with Chl a fluorescence: experiments with Synechococcus sp. PCC 7942. Physiol Plant 103:215–224

    Article  CAS  Google Scholar 

  • Pagis LY, Popova LG, Andreev IM, Balnokin YV (2003) Comparative characterization of the two primary pumps, H+-ATPase and Na+-ATPase, in the plasma membrane of the marine alga Tetraselmis viridis. Physiol Plant 118:514–522

    Article  CAS  Google Scholar 

  • Parks GE, Dietrich MA, Schumaker KS (2002) Increased vacuolar Na(+)/H(+) exchange activity in Salicornia bigelovii Torr. in response to NaCl. J Exp Bot 53(371):1055–1065

    Article  PubMed  CAS  Google Scholar 

  • Qiu NW, Lu QT, Lu CM (2003) Photosynthesis, photosystem II efficiency and the xanthophyll cycle in the salt-adapted␣halophyte Atriplex centralasiatica. New Phytol 159:479–486

    Article  CAS  Google Scholar 

  • Ren ZH, Gao JP, Li LG, Cai XL, Huang W, Chao DY, Zhu MZ, Wang ZY, Luan S, Lin HX (2005) A rice quantitative trait locus for salt tolerance encodes a sodium transporter. Nat Genet 37(10):1141–6

    Article  PubMed  CAS  Google Scholar 

  • Shaul O (2002) Magnesium transport and function in plants: the tip of the iceberg. Biometals 15:309–323

    Article  PubMed  CAS  Google Scholar 

  • Sze H, Lia X, Palmgrenb MG (1999) Energization of plant cell membranes by H-pumping ATPases: regulation and biosynthesis. Plant Cell 11:677–690

    Article  PubMed  CAS  Google Scholar 

  • Talarczyk A, Krzymowska M, Borucki W, Hennig J (2002) Effect of yeast CAT1 gene expression on response of tobacco plants to Tobacco Mosaic Virus infection. Plant Physiol 129:1032–1044

    Article  PubMed  CAS  Google Scholar 

  • Vasekina AV, Yershov PV, Reshetova OS, Tikhonova TV, Lunin VG, Trofimova MS, Babakov AV (2005) Vacuolar Na+/H+ antiporter from barley: identification and response to salt stress. Biochemistry (Mosc) 70(1):100–107

    Article  CAS  Google Scholar 

  • Wang BS, Lüttge U, Rataj R (2001) Effects of salt treatment and osmotic stress on V-ATPase and V-PPase in leaves of the halophyte Suaeda salsa. J Exp Bot 52(365):2355–2365

    Article  PubMed  CAS  Google Scholar 

  • Xue ZY, Zhi D, Xue GP, Zhang H, Zhao YX, Xia GM (2004) Enhanced salt tolerance of transgenic wheat (Tritivum aestivum L.) expressing a vacuolar Na+/H+ antiporter gene with improved grain yields in saline soils in the field and a reduced level of leaf Na+. Plant Sci 167:849–859

    Article  CAS  Google Scholar 

  • Yan F, Zhu Y, Müller C, Zörb C, Schubert S (2002) Adaptation of H+-pumping and plasma membrane H+ ATPase activity in Proteoid roots of White Lupin under phosphate deficiency. Plant Physiol 129:50–63

    Article  PubMed  CAS  Google Scholar 

  • Yang T, Poovaiah BW (2002) Hydrogen peroxide homeostasis: Activation of plant catalase by calcium/calmodulin. Proc Natl Acad Sci USA 99(6):4097–4102

    Article  PubMed  CAS  Google Scholar 

  • Zhang HX, Blumwald E (2001) Transgenic salt tolerant tomato plants accumulate salt in foliage but not in fruit. Nat Biotechnol 19:765–768

    Article  PubMed  CAS  Google Scholar 

  • Zhang HX, Hodson J, Williams JP, Blumwald E (2001) Engineering salt tolerant Brassica plants: characterization of yield and seed oil quality in transgenic plants with increased vacuolar sodium accumulation. Proc Natl Acad Sci USA 98:12832–12836

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported financially by the National High Technology Research and Development Program of China (863 Program No. 2002AA629080) and the National Key Fundamental Research Program of China (973 Program No. 2006CB100104).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Zhang.

Additional information

Feng-Yun Zhao and Xue-Jie Zhang contributed equally to this work

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, FY., Zhang, XJ., Li, PH. et al. Co-expression of the Suaeda salsa SsNHX1 and Arabidopsis AVP1 confer greater salt tolerance to transgenic rice than the single SsNHX1 . Mol Breeding 17, 341–353 (2006). https://doi.org/10.1007/s11032-006-9005-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11032-006-9005-6

Keywords

Navigation