Skip to main content
Log in

Efficient synthesis and biological evaluation of new benzopyran-annulated pyrano[2,3-c]pyrazole derivatives

  • Original Article
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

A one-pot method has been described to synthesize benzopyran-annulated pyrano[2,3-c]pyrazoles, effectively by combining O-alkenyloxy/alkynyloxy-acetophenones with various pyrazolones in triethylammonium acetate (TEAA) under microwave irradiation. While combination of O-allyloxy- or O-prenyloxy-acetophenones with pyrazolones occurred efficiently, that of O-propargyloxy-acetophenones was found effective in the presence of ZnO catalyst, via a domino Knoevenagel–hetero-Diels–Alder (DKHDA) reaction. Aminobenzopyran frameworks were also synthesized, after nitro-containing products were reduced in tandem with iron(II) in an acidic medium. The in vitro antiproliferative activity of these compounds was measured and discussed against gram-positive, gram-negative and M. tuberculosis bacteria, fungi, and various representative human solid tumor cell lines, in addition to their ferric reducing antioxidant capability.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2

Similar content being viewed by others

References

  1. Bonne D, Coquerel Y, Constantieux T, Rodriguez J (2010) 1,3-Dicarbonyl compounds in stereoselective domino and multicomponent reactions. Tetrahedron Asymmetr 21:1085–1109. doi:10.1016/j.tetasy.2010.04.045

    Article  CAS  Google Scholar 

  2. Pesnot T, Kempter J, Schemies J, Pergolizzi G, Uciechowska U, Rumpf T, Sippl W, Jung M, Wagner GK (2011) Two-step synthesis of novel bioactive derivatives of the ubiquitous cofactor nicotinamide adenine dinucleotide (NAD). J Med Chem 54:3492–3499. doi:10.1021/jm1013852

    Article  CAS  PubMed  Google Scholar 

  3. Heald RA, Dexheimer TS, Vankayalapati H, Jain AS, Szabo LZ, Gleason-Guzman MC, Hurley LH (2005) Conformationally restricted analogues of psorospermin: design, synthesis, and bioactivity of natural-product-related bisfuranoxanthones. J Med Chem 48:2993–3004. doi:10.1021/jm049299c

    Article  CAS  PubMed  Google Scholar 

  4. Wang FQ, Yang H, He B, Jia YK, Meng SY, Zhang C, Liu HM, Liu FW (2016) A novel domino approach for synthesis of indolyltetrahydropyrano[4,3-c]pyrazole derivatives as anticancer agents. Tetrahedron 72:5769–5775. doi:10.1016/j.tet.2016.07.078

    Article  CAS  Google Scholar 

  5. Borah P, Naidu PS, Bhuyan PJ (2012) Synthesis of Some Tetrazole fused pyrido[2,3-c]coumarin Derivatives from a One-pot three-component reaction via Intramolecular 1,3-dipolar Cycloaddition Reaction of azide to nitriles. Tetrahedron Lett 53:5034–5037. doi:10.1016/j.tetlet.2012.07.060

    Article  CAS  Google Scholar 

  6. El-Tamany ESH, El-Shahed FA, Mohamed BH (1999) Synthesis and biological activity of some pyrazole derivatives. J Serb Chem Soc 64:9–18

    CAS  Google Scholar 

  7. Ismail ZH, Aly GM, El-Degwi MS, Heiba HI, Ghorab MM (2003) Synthesis and insecticidal activity of some new pyranopyrazoles, pyrazolopyranopyrimidines, and pyrazolopyranopyridines. Egypt J Biotechnol 13:73–82

    CAS  Google Scholar 

  8. Zaki MEA, Soliman HA, Hiekal OA, Rashad AE (2006) Pyrazolopyranopyrimidines as a class of anti-inflammatory agents. Z Naturforsch 61c:1–5

    Article  Google Scholar 

  9. Abdelrazek FM, Metz P, Kataeva O, Jaeger A, El-Mahrouky SF (2007) Synthesis andmolluscicidal activity of new chromene and pyrano[2,3-c]pyrazole derivatives. Arch Pharm 340:543–548. doi:10.1002/ardp.200700157

    Article  CAS  Google Scholar 

  10. Foloppe N, Fisher LM, Howes R, Potter A, Robertson AGS, Surgenor AE (2006) Identification of chemically diverse Chk1 inhibitors by receptor-based virtual screening. Bioorg Med Chem 14:4792–4802. doi:10.1016/j.bmc.2006.03.021

    Article  CAS  PubMed  Google Scholar 

  11. Mecadon H, Rohman MDR, Rajbangshi M, Myrboh B (2011) \(\gamma \)-Alumina as a recyclable catalyst for the four-component synthesis of 6-amino-4-alkyl/aryl-3-methyl-2,4-dihydropyrano\([2,3-c\)]pyrazole-5-carbonitriles in aqueous medium. Tetrahedron Lett 52:2523–2525. doi:10.1016/j.tetlet.2011.03.036

    Article  CAS  Google Scholar 

  12. Litvinov YM, Shestopalov AA, Rodinovskaya LA, Shestopalov AM (2009) New convenient four-component synthesis of 6-amino-2,4-dihydropyrano[2,3-c]pyrazol-5-carbonitriles and one-pot synthesis of 6’-aminospiro[(3H)-indol-3,4’-pyrano[2,3-c]pyrazol]-(1H)-2-on-5’-carbonitriles. J Comb Chem 11:914–919. doi:10.1021/cc900076j

    Article  CAS  PubMed  Google Scholar 

  13. Parmar NJ, Pansuriya BR, Parmar BD, Barad HA (2014) Solvent-free, one-pot synthesis and biological evaluation of some new dipyrazolo [3,4-b:4\(^\prime \),3\(^\prime \)-e]pyranylquinolones and their precursors. Med Chem Res 23:42–56. doi:10.1007/s00044-013-0608-2

    Article  CAS  Google Scholar 

  14. Dürr H, Bouas-Laurent H (eds) (1990) Photochromism: molecules and systems. Elsevier, Amsterdam

    Google Scholar 

  15. Crano JC, Guglielmetti RJ (eds) (1999) Organic photochromic and thermochromic compounds. Kluwer Academic, New York

    Google Scholar 

  16. Kim N, Lee S, Yi KY, Yoo S, Kim G, Lee CO, Parka SH, Lee BH (2003) Identification of a novel antiangiogenic agent;4-(N-imidazol-2-ylmethyl)amino benzopyran analogues. Bioorg Med Chem Lett 13:1661–1663. doi:10.1016/S0960-894X(03)00248-8

    Article  CAS  PubMed  Google Scholar 

  17. Yoo S, Yi KY, Lee S, Suh J, Kim N, Lee BH, Seo HW, Kim SO, Lee DH, Lim H, Shin HS (2001) A novel anti-ischemic ATP-sensitive potassium channel (\(K\)ATP) opener without vasorelaxation: \(N\)-(6-aminobenzopyranyl)-\(N^{\prime }\)-benzyl-\(N^{\prime \prime }\)-cyanoguanidine analogue. J Med Chem 44:4207–4215. doi:10.1021/jm010183f

    Article  CAS  PubMed  Google Scholar 

  18. Florence X, Dilly S, Tullio PD, Pirotte B, Lebrun P (2011) Modulation of the 6-position of benzopyran derivatives and inhibitory effects on the insulin releasing process. Bioorg Med Chem 19:3919–3928. doi:10.1016/j.bmc.2011.05.040

    Article  CAS  PubMed  Google Scholar 

  19. Brown CW, Liu S, Benbrook DM (2004) Novel heteroarotinoids as potential antagonists of mycobacterium bovis BCG. J Med Chem 47:1008–1017. doi:10.1021/jm0303453

    Article  CAS  PubMed  Google Scholar 

  20. Matsuzawa S, Suzuki T, Suzuki M, Matsuda A, Kawamura T, Mizuno Y, Kikuchi K (1994) Thyrsiferyl 23-acetate is a novel specific inhibitor of protein phosphatase PP2A. FEBS Lett 356:272–274. doi:10.1016/00145793(94)01281-4

    Article  CAS  PubMed  Google Scholar 

  21. Tietze LF, Beifuss U, Lökös M, Rischer M, Göhrt A, Sheldrick GM (1990) Synthese enantiomerenreiner heterosteroide durch intramolekulare hetero-Diels-Alder-reaktion. Angew Chem 102:545–547. doi:10.1002/ange.19901020511

    Article  CAS  Google Scholar 

  22. Parmar NJ, Teraiya SB, Patel RA, Talpada NP (2011) Tetrabutylammonium hydrogen sulfate mediated domino reaction: synthesis of novel benzopyran-annulated pyrano[2,3-C]pyrazoles. Tetrahedron Lett 52:2853–2856. doi:10.1016/j.tetlet.2011.03.108

    Article  CAS  Google Scholar 

  23. Parmar NJ, Teraiya SB, Barad HA, Sharma D, Gupta VK (2013) Efficient one-pot synthesis of precursors of some novel aminochromene annulated heterocycles via domino Knoevenagel-hetero-Diels-Alder reaction. Synth Commun 43:1577–1586. doi:10.1080/00397911.2011.652755

    Article  CAS  Google Scholar 

  24. Parmar NJ, Pansuriya BR, Labana BM, Sutariya TR, Kant R, Gupta VK et al (2012) Access to some angular aminochromeno[2,3-c]pyrazole precursors by a domino Knoevenagel-hetero-Diels-Alder reaction. Eur J Org Chem 5953–5964. doi:10.1002/ejoc.201200751

  25. Parmar NJ, Patel RA, Parmar BD, Talpada NP (2013) An efficient domino reaction in ionic liquid: synthesis and biological evaluation of some pyrano- and thiopyrano-fused heterocycles. Bioorg Med Chem Lett 23:1656–1661. doi:10.1016/j.bmcl.2013.01.079

    Article  CAS  PubMed  Google Scholar 

  26. Parmar NJ, Parmar BD, Sutariya TR, Kant R, Gupta VK (2014) An efficient synthesis of some thiopyranopyrazole-heterocycles via domino reaction in a Brønsted acidic ionic liquid. Tetrahedron Lett 55:6060–6064. doi:10.1016/j.tetlet.2014.09.026

    Article  CAS  Google Scholar 

  27. Sutariya TR, Labana BM, Parmar NJ, Kant R, Gupta VK, Plata GB, Padro’n JM (2015) Efficient synthesis of some new antiproliferative N-fused indoles and isoquinolines via 1,3-dipolar cycloaddition reaction in an ionic liquid. New J Chem 39:2657–2668. doi:10.1039/c4nj02308k

    Article  CAS  Google Scholar 

  28. Sutariya TR, Labana BM, Parmar BD, Parmar NJ, Kant R, Gupta VK (2015) A domino synthetic approach for new, angular pyrazol- and isoxazol-heterocycles using [DBU][Ac] as an effective reaction medium. RSC Adv 5:23519–23529. doi:10.1039/c5ra00493d

    Article  CAS  Google Scholar 

  29. Parmar NJ, Barad HA, Labana BM, Kant R, Gupta VK (2013) A glycerol mediated domino reaction: an efficient, green synthesis of polyheterocycles incorporating a new thiochromeno[2,3-b]quinoline unit. RSC Adv 3:20719–20725. doi:10.1039/c3ra43205j

    Article  CAS  Google Scholar 

  30. NCCLS (2009) National Committee on Clinical Laboratory Standards. Susceptibility testing of mycobacteria, nocardiae and other aerobic actinomycetes; approved standard. Wayne PA, USA. doi:10.1016/0732-8893(95)00276-6

  31. Monks A, Scudiero D, Skehan P, Shoemaker R, Paull K, Vistica D, Hose C, Langley J, Cronise P, Vaigro-Wolff A, Gray-Goodrich M, Campbell H, Mayo J, Boyd M (1991) Feasibility of a high-flux anticancer drug screen using a diverse panel of cultured human tumor cell lines. J Natl Cancer Inst 83:757–766

    Article  CAS  PubMed  Google Scholar 

  32. NCCLS (2000) National Committee for Clinical Laboratory Standards. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically, 5th ed. Approved Standard (M7A5);National Committee for Clinical Laboratory Standards, Wayne PA, USA. doi:10.1016/0732-8893(95)00276-6

  33. Benzie IF, Strain JJ (1996) The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Anal Biochem 239:70–76

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Head, Department of Chemistry, Sardar Patel University, for providing necessary research facilities. We are also thankful to the University Grants Commission (UGC), New Delhi, for financial support under the UGC Scheme of Major Research Project (F. No: 39-822/2010 (SR) dated 11.01.2011). Authors (BML, TRS and GCB) are grateful to the UGC, New Delhi, for research fellowship. Co-financed by the EU Research Potential (FP7-REGPOT-2012-CT2012-31637-IMBRAIN), the European Regional Development Fund (FEDER), and the Spanish Instituto de Salud Carlos III (PI11/00840).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Narsidas J. Parmar.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (docx 17148 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Labana, B.M., Brahmbhatt, G.C., Sutariya, T.R. et al. Efficient synthesis and biological evaluation of new benzopyran-annulated pyrano[2,3-c]pyrazole derivatives. Mol Divers 21, 339–354 (2017). https://doi.org/10.1007/s11030-017-9734-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-017-9734-y

Keywords

Navigation