Skip to main content
Log in

In silico prediction of drug-induced myelotoxicity by using Naïve Bayes method

  • Full-Length Paper
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

Drug-induced myelotoxicity usually leads to decrease the production of platelets, red cells, and white cells. Thus, early identification and characterization of myelotoxicity hazard in drug development is very necessary. The purpose of this investigation was to develop a prediction model of drug-induced myelotoxicity by using a Naïve Bayes classifier. For comparison, other prediction models based on support vector machine and single-hidden-layer feed-forward neural network  methods were also established. Among all the prediction models, the Naïve Bayes classification model showed the best prediction performance, which offered an average overall prediction accuracy of \(94 \pm 0.9~\%\) for the training set and \(82 \pm 2.5~\%\) for the external test set. The significant contributions of this study are that we first developed a Naïve Bayes classification model of drug-induced myelotoxicity adverse effect using a larger scale dataset, which could be employed for the prediction of drug-induced myelotoxicity. In addition, several important molecular descriptors and substructures of myelotoxic compounds have been identified, which should be taken into consideration in the design of new candidate compounds to produce safer and more effective drugs, ultimately reducing the attrition rate in later stages of drug development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Parent-Massin D, Hymery N, Sibiril Y (2010) Stem cells in myelotoxicity. Toxicology 267:112–117. doi:10.1016/j.tox.2009.10.031

    Article  CAS  PubMed  Google Scholar 

  2. Gribaldo L, Casati S, Figliuzzi L, Marafante E (1998) In vitro myelotoxicity of environmental contaminants. Environ Toxicol Pharmacol 6:135–141. doi:10.1016/S1382-6689(98)00029-5

    Article  CAS  PubMed  Google Scholar 

  3. De Jager R, Cheverton P, Tamanoi K, Coyle J, Ducharme M, Sakamoto N, Satomi M, Suzuki M (2000) DX-8951f: summary of phase I clinical trials. Ann N Y Acad Sci 922:260–273. doi:10.1111/j.1749-6632.2000.tb07044.x

    Article  PubMed  Google Scholar 

  4. Gribaldo L, Malerba I, Collotta A, Casati S, Pessina A (2000) Inhibition of CFU-E/BFU-E by 3-azido-3-deoxythymidine, chlorpropamide, and protoporphirin IX zinc (II): a comparison between direct exposure of progenitor cells and long-term exposure of bone marrow cultures. Toxicol Sci 58:96–101. doi:10.1093/toxsci/58.1.96

    Article  CAS  PubMed  Google Scholar 

  5. Gisbert JP, Gomollón F (2008) Thiopurine-induced myelotoxicity in patients with inflammatory bowel disease: a review. Am J Gastroenterol 103:1783–1800. doi:10.1111/j.1572-0241.2008.01848.x

    Article  PubMed  Google Scholar 

  6. Masubuchi N, May RD, Atsumi R (2004) A predictive model of human myelotoxicity using five camptothecin derivatives and the in vitro colony forming unit granulocyte/macrophage assay. Clin Cancer Res 10:6722–6731. doi:10.1158/1078-0432.CCR-04-0721

    Article  CAS  PubMed  Google Scholar 

  7. Holt DE, Andrews CM, Payne JP, Williams TC, Turton JA (1998) The myelotoxicity of chloramphenicol: in vitro and in vivo studies: II: in vivo myelotoxicity in the B6C3F1 mouse. Hum Exp Toxicol 17:8–17. doi:10.1177/096032719801700102

    Article  CAS  PubMed  Google Scholar 

  8. Sanpera N, Masot N, Janer M, Romeo C, De Pedro R (2002) Oestrogen-induced bone marrow aplasia in a dog with a Sertoli cell tumour. J Small Anim Pract 43:365–369. doi:10.1111/j.1748-5827.2002.tb00087.x

    Article  CAS  PubMed  Google Scholar 

  9. Parchment RE, Huang M, Erickson-Miller CL (1993) Roles for in vitro myelotoxicity tests in preclinical drug development and clinical trial planning. Toxicol Pathol 21:241–250. doi:10.1177/019262339302100217

    Article  CAS  PubMed  Google Scholar 

  10. Le Dréan G, Auffret M, Batina P, Arnold F, Sibiril Y, Arzur D, Parent-Massin D (2005) Myelotoxicity of trichothecenes and apoptosis: an in vitro study on human cord blood CD34\(^+\) hematopoietic progenitor. Toxicol In Vitro 19:1015–1024. doi:10.1016/j.tiv.2005.03.017

    Article  PubMed  Google Scholar 

  11. Pessina A, Albella B, Bayo M, Bueren J, Brantom P, Casati S, Croera C, Gagliardi G, Foti P, Parchment R, Parent-Massin D, Schoeters G, Sibiril Y, Van Den Heuvel R, Gribaldo L (2003) Application of the CFU-GM assay to predict acute drug-induced neutropenia: an international blind trial to validate a prediction model for the maximum tolerated dose (MTD) of myelosuppressive xenobiotics. Toxicol Sci 75:355–367. doi:10.1093/toxsci/kfg188

    Article  CAS  PubMed  Google Scholar 

  12. Rio B, Lautraite S, Parent-Massin D (1997) In vitro toxicity of trichothecenes on human erythroblastic progenitors. Hum Exp Toxicol 16:673–679. doi:10.1177/096032719701601108

    Article  CAS  PubMed  Google Scholar 

  13. Stephenson J, Axelrad AA, Mc Leod DL, Shreeve MM (1971) Induction of colonies of hemoglobin-synthesizing cells by erythropoietin. Proc Natl Acad Sci USA 68:1542–1546. doi:10.1073/pnas.68.7.1542

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Friedenstein AJ, Chailakhyan RK, Laliykina KS (1970) The development of fibroblasts colonies in monolayer cultures of guinea pig bone marrow and spleen. Cell Tissue Kinet 3:393–403. doi:10.1111/j.1365-2184.1970.tb00347.x

    CAS  PubMed  Google Scholar 

  15. Naughton BA, Sibanda D, Azar L, San Roman J (1992) Differential effects of drugs upon hematopoiesis can be assessed in long-term bone marrow culture established on nylon screens. Proc Soc Exp Biol Med 199:481–490. doi:10.3181/00379727-199-43384

    Article  CAS  PubMed  Google Scholar 

  16. Dickins M, Modi S (2002) Importance of predictive ADME simulations. Drug Discov Today 7:755–756. doi:10.1016/j.drudis.2011.10.022

    Article  PubMed  Google Scholar 

  17. Grime KH, Barton P, McGinnity DF (2013) Application of in silico, in vitro and preclinical pharmacokinetic data for the effective and efficient prediction of human pharmacokinetics. Mol Pharm 10:1191–1206. doi:10.1021/mp300476z

    Article  CAS  PubMed  Google Scholar 

  18. Kimber I, Humphris C, Westmoreland C, Alepee N, Dal Negro G, Manou I (2011) Computational chemistry, systems biology and toxicology. Harnessing the chemistry of life: revolutionizing toxicology. A commentary. J Appl Toxicol 31:206–209. doi:10.1002/jat.1666

    Article  CAS  PubMed  Google Scholar 

  19. Modi S, Hughes M, Garrow A, White A (2012) The value of in silico chemistry in the safety assessment of chemicals in the consumer goods and pharmaceutical industries. Drug Discov Today 17:135–142. doi:10.1016/j.drudis.2011.10.022

    Article  CAS  PubMed  Google Scholar 

  20. Modi S (2004) Positioning ADMET in silico tools in drug discovery. Drug Discov Today 9:14–15. doi:10.1016/S1359-6446(04)02956-3

    Article  PubMed  Google Scholar 

  21. Vedani A, Smiesko M (2009) In silico toxicology in drug discovery—concepts based on three-dimensional models. Altern Lab Anim 37:477–496. doi:10.1016/j.taap.2009.08.022

    CAS  PubMed  Google Scholar 

  22. Ekins S, Williams AJ, Xu JJ (2010) A predictive ligand-based bayesian model for human drug-induced liver injury. Drug Metab Dispos 38:2302–2308. doi:10.1124/dmd.110.035113

    Article  CAS  PubMed  Google Scholar 

  23. Ekins S (2014) Progress in computational toxicology. J Pharm Toxicol Methods 69:115–140. doi:10.1016/j.vascn.2013.12.003

  24. Hu X, Yan A (2012) In silico models to discriminate compounds inducing and noninducing toxic myopathy. Mol Inf 31:27–39. doi:10.1002/minf.201100067

    Article  Google Scholar 

  25. Zhang H, Li W, Xie Y, Wang WJ, Li LL, Yang SY (2011) Rapid and accurate assessment of seizure liability of drugs by using an optimal support vector machine method. Toxicol In vitro 25:1848–1854. doi:10.1016/j.tiv.2011.05.015

    Article  CAS  PubMed  Google Scholar 

  26. Zhang H, Chen QY, Xiang ML, Ma CY, Huang Q, Yang SY (2009) In silico prediction of mitochondrial toxicity by using GA-CG-SVM approach. Toxicol In Vitro 23:134–140. doi:10.1016/j.artmed.2008.07.001

    Article  CAS  PubMed  Google Scholar 

  27. Box GEP, Tiao CC (1973) Bayesian inference in statistical analysis. Addison-Wesley, Reading

    Google Scholar 

  28. Berger JO (1985) Statistical decision theory and bayesian analysis. Springer, New York

    Book  Google Scholar 

  29. Langdon SR, Mulgrew J, Paolini GV, van Hoorn WP (2010) Pre-dicting cytotoxicity from heterogeneous data sources with Bayesian learning. J Cheminform 2:11–29. doi:10.1186/1758-2946-2-11

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Di-wu L, Li LL, Wang WJ, Xie HZ, Yang J, Zhang CH, Huang Q, Zhong L, Feng S, Yang SY (2012) Identification of CK2 inhibitors with new scaffolds by a hybrid virtual screening approach based on Bayesian model; pharmacophore hypothesis and molecular docking. J Mol Graph Model 36:42–47. doi:10.1016/j.jmgm.2012.03.004

    Article  PubMed  Google Scholar 

  31. Yang Y, Zhang W, Cheng JG, Tang Y, Peng YQ, Li Z (2013) Pharmacophore, 3D-QSAR, and bayesian model analysis for ligands binding at the benzodiazepine site of GABAA receptors: the key roles of amino group and hydrophobic sites. Chem Biol Drug Des 81:583–590. doi:10.1111/cbdd.12100

    Article  CAS  PubMed  Google Scholar 

  32. Zientek M, Stoner C, Ayscue R, Klug-McLeod J, Jiang Y, West M, Collins C, Ekins S (2010) Integrated in silico-in vitro strategy for addressing cytochrome P450 3A4 time-dependent inhibition. Chem Res Toxicol 23:664–676. doi:10.1021/tx900417f

    Article  CAS  PubMed  Google Scholar 

  33. Rogers D, Brown RD, Hahn M (2005) Using extended-connectivity fingerprints with Laplacian-modified Bayesian analysis in high-throughput screening follow-up. J Biomol Screen 10:682–686. doi:10.1021/tx900417f

    Article  CAS  PubMed  Google Scholar 

  34. Yang SY, Huang Q, Li LL, Ma CY, Zhang H, Bai R, Teng QZ, Xiang ML, Wei YQ (2009) An integrated scheme for feature selection and parameter setting in the support vector machine modeling and its application to the prediction of pharmacokinetic properties of drugs. Artif Intell Med 46:155–163. doi:10.1016/j.artmed.2008.07.001

    Article  PubMed  Google Scholar 

  35. Li LK, Shao S, Yiu KFC (2013) A new optimization algorithm for single hidden layer feedforward neural networks. Appl Soft Comput 13:2857–2862. doi:10.1016/j.asoc.2012.04.034

    Article  Google Scholar 

  36. Crivori E, Pennella G, Magistrelli M, Grossi P, Giusti AM (2011) Predicting myelosuppression of drugs from in silico models. J Chem Inf Model 51:434–445. doi:10.1021/ci1003834

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Project for Enhancing the Research Capability of Young Teachers in Northwest Normal University (NWNU-LKQN-12-7).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Zhang.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (rar 480 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Yu, P., Zhang, TG. et al. In silico prediction of drug-induced myelotoxicity by using Naïve Bayes method. Mol Divers 19, 945–953 (2015). https://doi.org/10.1007/s11030-015-9613-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-015-9613-3

Keywords

Navigation