Skip to main content
Log in

Ionic liquids screening for desulfurization of natural gasoline by liquid–liquid extraction

  • Full-Length Paper
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

Seventy five ionic liquids (ILs) were tested as a sequestering agent of sulfured compounds in natural gasoline (NG). Desulphurization of NG was performed by means of liquid–liquid extraction method at room temperature and atmospheric pressure. Experimental ILs containing imidazolium, pyridinium, and ammonium cations along with organic and inorganic anions were synthesized conventionally and under microwave and sonochemical conditions. The effect of the molecular structure of ILs on the desulfurization efficiency of NG with high sulfur content was evaluated. Analysis indicated that the anion type played a more important role than the cation on the desulphurization process. ILs based on halogen–ferrates and halogen–aluminates exhibited the highest efficiency in sulfur removal, and their efficiency is further improved when there is an excess of metallic salt in a ratio of at least 1:1.3 during the synthesis of the corresponding IL. An explanation for the ability of metallic ILs to remove sulfur-containing compounds from natural gasoline based on the ratio of the ionic charge to the atomic radius is proposed. Furthermore, a method to recover and reuse water-sensitive to halogenated precursors is described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kidnay AJ, Parrish WR (2006) Fundamentals of natural gas processing. CRC Press, Boca Raton

    Google Scholar 

  2. Zaczepinski S (1996) Exxon diesel oil deep desulfurization (DODD). In: Meyer RA (eds) Handbook of petroleum refining processes, Chapter 8.7. McGraw-Hill, New York

    Google Scholar 

  3. Kabe T, Ishihara A, Qian W (1999) Hydrodesulfurization and hydrodenitrogenation: chemistry and engineering. Willey-VCH, Weinheim

    Google Scholar 

  4. Wasserscheid P, Welton T (2003) Ionic liquids in synthesis. Willey-VCH, Weinheim. doi:10.1002/3527600701

    Google Scholar 

  5. Zhao H, Malhotra SV (2002) Applications of ionic liquids in organic synthesis. Aldrichim Acta 35: 75–83

    Article  CAS  Google Scholar 

  6. Martínez-Palou R (2009) Microwave-assisted synthesis using ionic liquids. Mol Divers. doi:10.1007/s11030-009-9159-3 (in press)

  7. Rogers RD, Seddon KR (eds) (2003) Ionic liquids as green solvent: progress and prospects. ACS symposium series, vol 856. American Chemical Society, Washington, DC

  8. Rogers RD, Seddon K (ed) (2005) Ionic liquids IIIB: fundamentals, progress, challenges, and opportunities: transformations and processes. ACS Symposium Series, vol 902. American Chemical Society, Washington, DC

  9. Roger, RD, Seddon, KR, Volkov, S (eds) (2002) Green industrial applications of ionic liquids. NATO Science Series. Kluwer, Netherlands

    Google Scholar 

  10. Ito E, van Veen JAR (2006) On novel processes for removing sulphur from refinery streams. Catal Today 116: 446–460. doi:10.1016/j.cattod.2006.06.040

    Article  CAS  Google Scholar 

  11. Brunet S, Mey D, Perot G, Bouchy C, Diehl F (2005) On the hydrodesulfurization of FCC gasoline a review. Appl Catal A 278: 143–172. doi:10.1016/j.apcata.2004.10.012

    Article  CAS  Google Scholar 

  12. Song CS (2003) An overview of new approaches to deep desulfurization for ultra-clean gasoline diesel fuel and jet fuel. Catal Today 86: 211–263. doi:10.1016/s0920-5861(03)00412-7

    Article  CAS  Google Scholar 

  13. Bosmann A, Datsevich L, Jess A, Lauter A, Schmitz C, Wasserscheid P (2001) Deep desulfurization of diesel fuel by extraction with ionic liquids. Chem Commun 2494–2495. doi:10.1039/b108411a

  14. Zhang SG, Zhang ZC (2002) Novel properties of ionic liquids in selective sulfur removal from fuels at room temperature. Green Chem 4: 376–379. doi:10.1039/b205170m

    Article  CAS  Google Scholar 

  15. Eer J, Wasserscheid P, Jess A (2004) Deep desulfurization of oil refinery streams by extraction with ionic liquids. Green Chem 6: 316–322. doi:10.1039/b407028c

    Article  Google Scholar 

  16. Zhang SG, Zhang QL, Zhang ZC (2004) Extractive desulfurization and denitrogenation of fuels using ionic liquids. Ind Eng Chem Res 43: 614–622. doi:10.1021/ie030561+

    Article  CAS  Google Scholar 

  17. Huang CP, Chen BH, Zhang J, Liu ZC, Li YX (2004) Desulfurization of gasoline by extraction with new ionic liquids. Energy Fuels 18: 1862–1864. doi:10.1021/ef049879k

    Article  CAS  Google Scholar 

  18. Nie Y, Li CX, Sun AJ, Meng H, Wang ZH (2006) Extractive desulfurization of gasoline using imidazolium-based phosphoric ionic liquids. Energy Fuels 20: 2083–2087. doi:10.1021/ef060170i

    Article  CAS  Google Scholar 

  19. Nie Y, Li CX, Wang ZH (2007) Extractive desulfurization of fuel oil using alkylimidazole and its mixture with dialkylphosphate ionic liquids. Ind Eng Chem Res 46: 5108–5112. doi:10.1021/ie070385v

    Article  CAS  Google Scholar 

  20. Holbrey JD, Lopez-Martin I, Rothenberg G, Seddon KR, Silvero G, Zheng X (2008) Desulfurisation of oils using ionic liquids: selection of cationic and anionic components to enhance extraction efficiency. Green Chem 10: 87–92. doi:10.1039/b710651c

    Article  CAS  Google Scholar 

  21. Ko NH, Lee JS, Huh ES, Lee H, Jung KD, Kim HS, Cheong M (2008) Extractive desulfurization using Fe-containing ionic liquids. Energy Fuels 22: 1687–1690. doi:10.1021/ef7007369

    Article  CAS  Google Scholar 

  22. Gao H, Xing J, Li Y, Li W, Liu Q, Liu H (2009) Desulfurization of diesel fuel by extraction with lewis-acidic ionic liquid. Sep Sci Technol 44: 971–982. doi:10.1080/01496390802691232

    Article  CAS  Google Scholar 

  23. Gao H, Luo M, Xing J, Wu Y, Li Y, Li W, Liu Q, Liu H (2008) Desulfurization of fuel by extraction with pyridinium-based ionic liquids. Ind Eng Chem Res 47: 8384–8388. doi:10.1021/ie800739w

    Article  CAS  Google Scholar 

  24. Liu D, Gui J, Song L, Zhang X, Sun Z (2008) Deep desulfurization of diesel fuel by extraction with task-specific ionic liquids. Pet Sci Technol 26: 973–982. doi:10.1080/10916460600695496

    Article  CAS  Google Scholar 

  25. Schmidt R (2008) [Bmim]AlCl4 ionic liquid for deep desulfurization of real fuels. Energy Fuel 22: 1774–1778. doi:10.1021/ef7007216

    Article  CAS  Google Scholar 

  26. Alonso L, Arce A, Francisco M, Rodriguez O, Soto A (2007) Gasoline desulfurization using extraction with [C8mim][BF4] ionic liquid. AIChE J 53: 3108–3115. doi:10.1002/aic.11337

    Article  CAS  Google Scholar 

  27. Jiang X, Nie Y, Li C, Wang Z. (2008) Imidazolium-based alkylphosphate ionic liquids—a potential solvent for extractive desulfurization of fuel. Fuel 87: 79–84. doi:10.1016/j.fuel.2007.03.045

    Article  CAS  Google Scholar 

  28. Shiraishi Y, Hirai T, Komasawa I (1999) Identification of desulfurization products in the photochemical desulfurization process for benzothiophenes and dibenzothiophenes from light oil using an organic two-phase extraction system. Ind Eng Chem Res 38: 3300–3309. doi:10.1021/ie990134p

    Article  CAS  Google Scholar 

  29. Leadbeater NE, Torenius HM, Tye H (2003) Ionic liquids as reagents and solvents in conjunction with microwave heating: rapid synthesis of alkyl halides from alcohols and nitriles from aryl halides. Tetrahedron 59: 2253–2258. doi:10.1016/s0040-4020(03)00214-x

    Article  CAS  Google Scholar 

  30. Csihony S, Fischmeister C, Bruneau C, Horvath IT, Dixneuf PH (2002) First ring-opening metathesis polymerization in an ionic liquid. Efficient recycling of a catalyst generated from a cationic ruthenium allenylidene complex. New J Chem 26: 1667–1670. doi:10.1039/b205920g

    Article  CAS  Google Scholar 

  31. Varma RS, Namboodiri VV (2001) An expeditious solvent-free route to ionic liquids using microwaves. Chem Commun 643–644 doi:10.1039/b101375k

  32. Deetlefs M, Seddon KR (2003) Improved preparations of ionic liquids using microwave irradiation. Green Chem 5: 181–186. doi:10.1039/b300071k

    Article  CAS  Google Scholar 

  33. Weng J, Wang C, Li HR, Wang Y (2006) Novel quaternary ammonium ionic liquids and their use as dual solvent-catalysts in the hydrolytic reaction. Green Chem 8: 96–99. doi:10.1039/b508325g

    Article  CAS  Google Scholar 

  34. Yoshizawa M, Hirao M, Ito-Akita K, Ohno H (2001) Ion conduction in zwitterionic-type molten salts and their polymers. J Mater Chem 11: 1057–1062. doi:10.1039/b101079o

    Article  CAS  Google Scholar 

  35. Cole AC, Jensen JL, Ntai I, Tran KLT, Weaver KJ, Forbes DC, Davis JH (2002) Novel Brønsted acidic ionic liquids and their use as dual solvent-catalysts. J Am Chem Soc 124: 5962–5963. doi:10.1021/ja026290w

    Article  CAS  PubMed  Google Scholar 

  36. Holbrey JD, Reichert WM, Swatloski RP, Broker GA, Pitner WR, Seddon KR, Rogers RD (2002) Efficient, halide free synthesis of new, low cost ionic liquids: 1,3-dialkylimidazolium salts containing methyl- and ethyl-sulfate anions. Green Chem 4: 407–413. doi:10.1039/b204469b

    Article  CAS  Google Scholar 

  37. Liu Q, Janseen MHA, Van Rantwijk F, Sheldon RA (2005) Room-temperature ionic liquids that dissolve carbohydrates in high concentration. Green Chem 39–42. doi:10.1039/b412848f

  38. Varma RS, Namboodiri VV (2001) Solvent-free preparation of ionic liquids using household microwave. Pure Appl Chem 73: 1309–1313

    Article  CAS  Google Scholar 

  39. Abbott AP, Capper G, Davies DL, Rasheed R (2004) Ionic liquids based upon metal halide/substituted quaternary ammonium salt mixtures. Inorganic Chem 43: 3447–3452. doi:10.1021/ic049931s

    Article  CAS  Google Scholar 

  40. Fischer T, Sethi A, Welton T, Woolf J (1999) Diels-Alder reactions in room-temperature ionic liquids. Tetrahedron Lett 40: 793–796. doi:10.1016/S0040-4039(98)02415-0

    Article  CAS  Google Scholar 

  41. Fannin AA, Floreani DA, King LA et al (1984) Properties of 1,3-dialkylimidazolium chloride aluminium-chloride ionic liquids. 2. Phase-transitions, densities, electrical conductivities, and viscosities. J Phys Chem 88: 2614–2621. doi:10.1021/j150656a038

    Article  CAS  Google Scholar 

  42. Csihony S, Fischmeister C, Bruneau C et al (2002) First ring-opening metathesis polymerization in an ionic liquid. Efficient recycling of a catalyst generated from a cationic ruthenium allenylidene complex. New J Chem 26: 1667–1670. doi:10.1039/b205920g

    Article  CAS  Google Scholar 

  43. Robinson J, Osteryoung RA (1979) An electrochemical and spectroscopic study of some aromatic hydrocarbons in the room temperature molten salt system aluminum chloride-n-butylpyridinium chloride. J Am Chem Soc 101: 323–327. doi:10.1021/ja00496a008

    Article  CAS  Google Scholar 

  44. Kim YJ, Varma RS (2005) Tetrahaloindate (III)-based ionic liquids in the coupling reaction of carbon dioxide and epoxides to generate cyclic carbonates: H-bonding and mechanistic studies. J Org Chem 70: 7882–7891. doi:10.1021/jo050699x

    Article  CAS  PubMed  Google Scholar 

  45. Namboodiri VV, Varma RS (2002) Solvent-free sonochemical preparation of ionic liquids. Org Lett 4: 3161–3163. doi:10.1021/ol026608p

    Article  CAS  PubMed  Google Scholar 

  46. Dzyuba SV, Bartsch RA (2001) New room-temperature ionic liquids with C-2-symmetrical imidazolium cations. Chem Commun:1466–1467 doi:10.1039/b104512c

  47. Meindersma GW, Podt A, de Haan AB (2005) Selection of ionic liquids for the extraction of aromatic hydrocarbons from aromatic/aliphatic mixtures. Fuel Process Technol 87: 59–70. doi:10.1016/j.fuproc.2005.06.002

    Article  Google Scholar 

  48. Zhang J, Huang C, Chen B et al (2007) Extraction of aromatic hydrocarbons from aromatic/aliphatic mixtures using chloroaluminate room-temperature ionic liquids as extractants. Energy Fuels 21: 1724–1730. doi:10.1021/ef060604+

    Article  CAS  Google Scholar 

  49. Acevedo O, Jorgensen WL, Evanseck JD (2007) Elucidation of rate variations for a diels-alder reaction in ionic liquids from QM/MM simulations. J Chem Theory Comput 3: 132–138. doi:10.1021/ct6002753

    Article  CAS  Google Scholar 

  50. Qiao K, Deng YQ (2002) The first example of alkane carbonylation in superacidic chloroaluminate ionic liquids. A Chim Sinica 60: 1520–1523

    CAS  Google Scholar 

  51. Hu X, Yu J, Liu H (2006) Liquid–liquid equilibria of the system 1-(2-hydroxyethyl)-3-methylimidozolium Tetrafluoroborate or 1-(2-hydroxyethyl)-2,3-dimethylimidozolium tetrafluoroborate + water + 1-butanol at 293.15 K. J Chem Eng Data 51: 691–695. doi:10.1021/je050382u

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael Martínez-Palou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Likhanova, N.V., Guzmán-Lucero, D., Flores, E.A. et al. Ionic liquids screening for desulfurization of natural gasoline by liquid–liquid extraction. Mol Divers 14, 777–787 (2010). https://doi.org/10.1007/s11030-009-9217-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-009-9217-x

Keywords

Navigation