Skip to main content
Log in

Emergence and Fundamentality in a Pancomputationalist Universe

  • Published:
Minds and Machines Aims and scope Submit manuscript

Abstract

The aim of this work is to apply information theoretic ideas to the notion of fundamentality. I will argue that if one adopts pancomputationalism (the idea that the world is a computer of some sort) as a metaphysics for the universe, then there are higher-level structures which are just as fundamental for computation as anything from microphysics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aaronson, S. (2005). Guest column: NP-complete problems and physical reality. ACM Sigact News, 36(1), 30–52.

    Article  Google Scholar 

  • Baker, A. (2009). Mathematical explanation in science. The British Journal for the Philosophy of Science, 60(3), 611–663.

    Article  MathSciNet  MATH  Google Scholar 

  • Balaguer, M. (1996). A fictionalist account of the indispensable applications of mathematics. Philosophical Studies, 83(3), 291–314.

    Article  MathSciNet  Google Scholar 

  • Barahona, F. (1982). On the computational complexity of Ising spin glass models. Journal of Physics A: Mathematical and General, 15(10), 3241.

    Article  MathSciNet  Google Scholar 

  • Barnes, E. (2012). Emergence and fundamentality. Mind, 121(484), 873–901.

    Article  Google Scholar 

  • Bekenstein, J. (1981). Universal bound on the entropy to energy ratio for bounded systems. Physical Review D, 23, 287–298.

    Article  MathSciNet  Google Scholar 

  • Berger, B., & Leighton, T. (1998). Protein folding in the hydrophobic–hydrophilic (HP) model is NP-complete. Journal of Computational Biology, 5(1), 27–40.

    Article  Google Scholar 

  • Berto, F., & Tagliabue, J. (2014). The world is either digital or analogue. Synthese, 191(3), 481–497.

    Article  MathSciNet  Google Scholar 

  • Bueno, O., & Colyvan, M. (2011). An inferential conception of the application of mathematics. Noûs, 45(2), 345–374.

    Article  MathSciNet  Google Scholar 

  • Bueno, O., & French, S. (2012). Can mathematics explain physical phenomena? The British Journal for the Philosophy of Science, 63(1), 85–113.

    Article  MathSciNet  MATH  Google Scholar 

  • Chaitin, G. J. (1969). On the length of programs for computing finite binary sequences: Statistical considerations. Journal of the ACM (JACM), 16(1), 145–159.

    Article  MathSciNet  MATH  Google Scholar 

  • Chaitin, G. (2003). Two philosophical applications of algorithmic information theory. In C. S. Calude, M. J. Dinneen & V. Vajnovszki (Eds.), Discrete mathematics and theoretical computer science (pp. 1–10). Berlin: Springer.

    Chapter  Google Scholar 

  • Crescenzi, P., Goldman, D., Papadimitriou, C., Piccolboni, A., & Yannakakis, M. (1998). On the complexity of protein folding. Journal of Computational Biology, 5(3), 423–465.

    Article  Google Scholar 

  • Davies, P. C. W. (2004). Emergent biological principles and the computational properties of the universe: Explaining it or explaining it away. Complexity, 10(2), 11–15.

    Article  Google Scholar 

  • Davies, P. C. W.(2007). The implications of a cosmological information bound for complexity, quantum information and the nature of physical law. Fluctuation and Noise Letters, 7(04), C37–C50.

    Article  Google Scholar 

  • Davies, P. C. W. (2010). The implications of a holographic universe for quantum information science and the nature of physical law. http://www.ctnsstars.org/conferences/papers/Holographic%20universe%20and%20information.pdf.

  • Fasman, G. D. (1989). Prediction of protein structure and the principles of protein conformation. New York: Plenum.

    Book  Google Scholar 

  • Field, H. (1989). Realism, mathematics & modality. Blackwell: Oxford.

    MATH  Google Scholar 

  • Floridi, L. (2009). Against digital ontology. Synthese, 168(1), 151–178.

    Article  MATH  Google Scholar 

  • Floridi, L. (2011). The philosophy of information. Oxford: Oxford University Press.

    Book  Google Scholar 

  • Fraenkel, A. S. (1993). Complexity of protein folding. Bulletin of Mathematical Biology, 55(6), 1199–1210.

    Article  MATH  Google Scholar 

  • Fredkin, E. (2003). An introduction to digital philosophy. International Journal of Theoretical Physics, 42(2), 189–247.

    Article  MathSciNet  MATH  Google Scholar 

  • Frege, G. (1953), Foundations of arithmetic. Oxford: Blackwell. Translated by J. L. Austin.

  • Gough, M. P. (2013). Holographic dark information energy: Predicted dark energy measurement. Entropy, 15(3), 1135–1151.

    Article  Google Scholar 

  • Kolmogorov, A. N. (1965). Three approaches to the quantitative definition of information. Problems of Information Transmission, 1(1), 1–7.

    MathSciNet  Google Scholar 

  • Landauer, R. (1996). The physical nature of information. Physics Letters A, 217(4), 188–193.

    Article  MathSciNet  MATH  Google Scholar 

  • Leng, M. (2002). What’s wrong with indispensability? (Or the case for recreational mathematics). Synthese, 131, 395–417.

    Article  MathSciNet  MATH  Google Scholar 

  • Lesne, A. (2007). The discrete versus continuous controversy in physics. Mathematical Structures in Computer Science, 17(02), 185–223.

    Article  MathSciNet  MATH  Google Scholar 

  • Levin, M., & Wen, X. G. (2005). Colloquium: photons and electrons as emergent phenomena. Reviews of modern physics, 77(3), 871.

    Article  Google Scholar 

  • Lloyd, S. (2002). Computational capacity of the universe. Physical Review Letters, 88(23), 237901.

    Article  Google Scholar 

  • Luisi, P. L. (2002). Emergence in chemistry: Chemistry as the embodiment of emergence. Foundations of Chemistry, 4(3), 183–200.

    Article  Google Scholar 

  • McAllister, J. W. (2013). Empirical evidence that the world is not a computer. In M. Emmer (Ed.),Imagine math 2 (pp. 127–135). Milan: Springer.

    Google Scholar 

  • Ming, L., & Vitányi, P. (1997). An introduction to Kolmogorov complexity and its applications. Heidelberg: Springer.

    MATH  Google Scholar 

  • Pincock, C. (2004). A revealing flaw in colyvan’s indispensability argument. Philosophy of Science, 71, 61–79.

    Article  MathSciNet  Google Scholar 

  • Pincock, C. (2007). A role for mathematics in the physical sciences. Nous, 41(2), 253–275.

    Article  MathSciNet  Google Scholar 

  • Rimratchada, S., McLeish, T. C. B., Radford, S. E., & Paci, E.(2014). The role of high-imensional diffusive search, stabilization, and frustration in protein folding. Bio-physical Journal, 106(8), 1729–1740.

    Google Scholar 

  • Schmidhuber, J. (1997). A computer scientist’s view of life, the universe, and everything. In C. Freksa (Ed.), Foundations of computer science (pp. 201–208). Berlin: Springer.

    Google Scholar 

  • Smolin, L. (2006). Atoms of space and time. Scientific American, 15(3), 56–65.

    Google Scholar 

  • Solomonoff, R. J. (1964). A formal theory of inductive inference, parts 1 and 2. Information and Control, 7(1–22), 224–254.

    Article  MathSciNet  MATH  Google Scholar 

  • Susskind, L. (1995). The world as a hologram. Journal of Mathematical Physics, 36, 6377–6396.

    Article  MathSciNet  MATH  Google Scholar 

  • ‘t Hooft, G. (1993). Dimensional reduction in quantum gravity. ArXiv preprint gr-qc/9310026.

  • ‘t Hooft, G. (1996). In search of the ultimate building blocks. In search of the ultimate building blocks (1st ed.). Cambridge: Cambridge University Press.

  • Turing, A. M. (1937). Computability and λ-definability. The Journal of Symbolic Logic, 2(4), 153–163.

    Article  Google Scholar 

  • Twardy, C., Gardner, S., & Dowe, D. L. (2005). Empirical data sets are algorithmically compressible: Reply to McAllister? Studies in History and Philosophy of Science Part A, 36(2), 391–402.

    Article  MathSciNet  Google Scholar 

  • Von Neumann, J., & Burks, A. W. (1966). Theory of self-reproducing automata. IEEE Transactions on Neural Networks, 5(1), 3–14.

    Google Scholar 

  • Weinberg, S. (2002). Is the universe a computer? The New York Review of Books, 49(16), 43–47.

    Google Scholar 

  • Welsh, D. J. (1993). The complexity of knots. Annals of Discrete Mathematics, 55, 159–171.

    Article  MathSciNet  Google Scholar 

  • Wheeler, J. A. (1984). Bits, quanta, meaning. Problems in Theoretical Physics, 121–141.

  • Wolfram, S. (2002). A new kind of science (Vol. 5). Champaign: Wolfram media.

    MATH  Google Scholar 

  • Zuse, K. (1969). Rechnender Raum (Calculating space). http://philpapers.org/rec/ZUSRR.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark Pexton.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pexton, M. Emergence and Fundamentality in a Pancomputationalist Universe. Minds & Machines 25, 301–320 (2015). https://doi.org/10.1007/s11023-015-9383-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11023-015-9383-9

Keywords

Navigation